Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with hi...Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with high charge carrier mobility usually have planar and conjugated structures,thereby showing strong absorption in visible region.In this work,a new concept of incorporating transparent inorganic semiconductors is proposed for high-performance STOPVs.Copper(I)thiocyanate(CuSCN)is a visible-transparent inorganic semiconductor with an ionization potential of 5.45 eV and high hole mobility.The transparency of CuSCN benefits high average visible transmittance(AVT)of STOPVs.The energy levels of CuSCN as donor match those of near-infrared small molecule acceptor BTP-eC9,and the formed heterojunction exhibits an ability of exciton dissociation.High mobility of CuSCN contributes to a more favorable charge transport channel and suppresses charge recombination.The control STOPVs based on PM6/BTP-eC9 exhibit an AVT of 19.0%with a power conversion efficiency(PCE)of 12.7%.Partial replacement of PM6 with CuSCN leads to a 63%increase in transmittance,resulting in a higher AVT of 30.9%and a comparable PCE of 10.8%.展开更多
We investigated the effects of integrated organic and inorganic fertilizers on the growth and yield of indica rice variety Manawthukha and japonica rice variety Genkitsukushi.In a split-plot design,the two rice variet...We investigated the effects of integrated organic and inorganic fertilizers on the growth and yield of indica rice variety Manawthukha and japonica rice variety Genkitsukushi.In a split-plot design,the two rice varieties were assigned as main plot factors,and the integrated treatments were the subplot factors,including no-N fertilizer(N0),50%chemical fertilizer(CF)(CF50),100%CF(CF100),50%CF+50%poultry manure(PM)(CF50PM50),50%CF+50%cow manure(CM)(CF50CM50),and 50%CF+50%compost(CP)(CF50CP50).CF100 was equivalent to N at 85 kg/hm2.Manure was applied based on the estimated mineralizable nitrogen(EMN)level,which is dependent on total N(%)of each manure type.Manawthukha rice plants were taller with higher tiller number and dry matter content.However,higher soil-plant analysis development(SPAD)values were measured in Genkitsukushi throughout the crop growth period,resulting in higher seed-setting rate(%)and greater yield.At the same N level,CF50PM50 application in both rice varieties resulted in higher SPAD values,plant height and tiller number than CF100.CF50PM50 containing total N more than 4%supplied synchronized N for the demands of the rice plants,resulting in maximum dry matter,yield and yield components.CF50CM50 and CF50CP50 treatments containing total N less than 4%resulted in lower yields which were similar to CF100.These results indicated that integrating organic and inorganic fertilizers enhanced growth parameters and yields of Manawthukha and Genkitsukushi,while reducing the dose of chemical fertilizer.展开更多
The effects of temperature and different forms of nutrients on Chattonella marina growth have been investigated in strains isolated from the Daya Bay, the South China Sea. The strain of C. marina preferred high temper...The effects of temperature and different forms of nutrients on Chattonella marina growth have been investigated in strains isolated from the Daya Bay, the South China Sea. The strain of C. marina preferred high temperatures, with an optimal temperature of 25℃, and 18℃ was the minimum for its survival. Higher cell number and growth rate were obtained in high nitrogen and phosphorus concentrations (500 μg/L, 74μg/L) than under nutrient limitation. Nitrogen influenced the growth most, as the specific growth rate and maximum cell density were lower in nitrogen- limited cultures than noted under phosphorus limitation or under limitation from both. C. marina was capable of using many kinds of organic nitrogen sources including L-serine (L-Ser), glycine (Gly), alanine (Ala), L-threonine (L-Thr), glutamic acid (Glu) and urea, but could not utilize uric acid. Various forms of organic phosphorus compound such as glucose-6-phosphate (G6P), sodium glycerophosphate (GYP), adenosine triphosphate (ATP), adenosine monophosphate (AMP), cyti- dine monophosphate (CMP), guanosine monophosphate (GMP), uridine monophosphate (UMP), 4-nitrophenylphosphate (NPP) and triethyl phosphate (TEP) supported the growth as well. Algal cells had the ability to sustain growth under nitrogenand/or phosphorus-free conditions particularly under phosphorus depleted condition. These results led to the hypothesis that high loading of nitrogen has played an important role in frequent C. marina blooms in the past decade, and its capability for utilization of diverse forms of organic nutrients and growth in low nutrient conditions make this species a likely recurrent dominant in the Daya Bay phytoplankton assemblages, visible as more frequent blooms.展开更多
Citrate, oxalate, tartrate and malate were added into soils during the growthperiod of ryegrass to study the effect of different organic ligands on the release of variousinorganic P (Pi) fractions in a yellow-brown so...Citrate, oxalate, tartrate and malate were added into soils during the growthperiod of ryegrass to study the effect of different organic ligands on the release of variousinorganic P (Pi) fractions in a yellow-brown soil and a paddy soil. The results showed that oxalatewas most effective in promoting the release of total Pi in the yellow-brown soil and tartrate in thepaddy soil. The dominant Pi fractions released from the yellow-brown soil were calcium phosphate(Ca-P) and aluminum phosphate (Al-P) and those from the paddy soil were iron phosphate (Fe-P) andreductant soluble phosphate (O-P) mobilized by tartrate. Phosphorous-mobilizing capability oforganic acids in the yellow-brown soil revealed the following order: oxalate > citrate > malate >tartrate. In the paddy soil, the order was tartrate > citrate ≈ oxalate > malate. It wasdemonstrated that organic ligands were different in their capabilities of mobilizing Pi and the sameorganic ligand showed also a discrepancy in mobilizing P in different soils. Although the additionof organic ligands into soils could increase the amount of P taken up by ryegrass, the more uptakeof P, however, was not only due to the more release of Pi, but also partly from organic P. In manycases, organic ligands promoted the release of the total Pi, while different fractions showeddifferent trends: some increased and others decreased.展开更多
Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPh...Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPhS in a mixed acid solution of nitric and sulfuric acids at about 60 ℃. Their molecular structures were determined by DRIFTS, 1H NMR, 13C NMR spectra analysis. The thermal analysis shows that ODNPhS is an explosive that detonates at about 420 ℃.展开更多
By two years (2007-2008) located fertilizer experiment, the effect of long-term combined application of organic and inorganic fertilizers on black soil fertility and crop yield was investigated in Shuangcheng City, ...By two years (2007-2008) located fertilizer experiment, the effect of long-term combined application of organic and inorganic fertilizers on black soil fertility and crop yield was investigated in Shuangcheng City, Heilongjiang Province. The results showed that the combined application of organic and inorganic fertilizers could increase the organinc matter, alkaline nitrogen, available phosphorus and available potassium. At the same time, the increasing application of organic fertilizer could reduce the soil bulk density and improve the field moisture capacity. Field moisture capacity and organic matter of the combined application of high quantities of organic manure and inorganic fertilizers AtB5 treatment increased the fhstest, organic matter increased by 3.33 g. kg and field moisture capacity increased by 11.25% than the beginning of the experiment. Under the same fertilization, the combined application of organic and inorganic fertilizers' increasing production range was higher than the single chemical fertilizers' which was from 0.8% to 9.4%. The results showed that the combined application of organic and inorganic fertilizers could increase the nutrient contents of soil and also was the highest productivity contribution to black soil fertility. It was the best fertilization structure of increasing productivity level and improving the soil fertility.展开更多
Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary....Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concen- trations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region, Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%:t:0.05% and 1.8%--0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riv- erine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95× 10^5 t of DIC, 0.64× 10^5 t of DOC, 78.58× 10^5 t of PIC and 2.29× 10^5 t of POC to the sea.展开更多
The distribution of the various organic and inorganic constituents and their influences on the combustion of coal has been comprehensively studied.However,the combustion characteristics of pulverized coal depend not o...The distribution of the various organic and inorganic constituents and their influences on the combustion of coal has been comprehensively studied.However,the combustion characteristics of pulverized coal depend not only on rank but also on the composition,distribution,and combination of the macerals.Unlike the proximate and ultimate analyses,determining the macerals in coal involves the use of sophisticated microscopic instrumentation and expertise.In this study,an attempt was made to predict the amount of macerals(vitrinite,inertinite,and liptinite)and total mineral matter from the Witbank Coalfields samples using the multiple input single output white-box artificial neural network(MISOWB-ANN),gene expression programming(GEP),multiple linear regression(MLR),and multiple nonlinear regression(MNLR).The predictive models obtained from the multiple soft computing models adopted are contrasted with one another using difference,efficiency,and composite statistical indicators to examine the appropriateness of the models.The MISOWB-ANN provides a more reliable predictive model than the other three models with the lowest difference and highest efficiency and composite statistical indicators.展开更多
A series of novel amphibious organic/inorganic hybrid proton exchange membranes with H3PO4 doped which could be used under both wet and dry conditions was prepared through a sol-gel process based on acrylated triethox...A series of novel amphibious organic/inorganic hybrid proton exchange membranes with H3PO4 doped which could be used under both wet and dry conditions was prepared through a sol-gel process based on acrylated triethoxysilane(A-TES) and benzyltetrazole-modified triethoxysilane(BT-TES).The dual-curing approach including UV-curing and thermal curing was used to obtain the crosslinked membranes.Polyethylene glycol(400) diacrylate(PEGDA) was used as an oligomer to form the polymeric matrix.The molecular structures of precursors were characterized by 1 H,13 C and 29 Si NMR spectra.The thermogravimetric analysis(TGA) results show that the membranes exhibit acceptable thermal stability for their application at above 200 oC.The differential scanning calorimeter(DSC) determination indicates that the crosslinked membranes with the mass ratios of below 1.6 of BT-TES to A-TES and the same mass of H3PO4 doped as that of A-TES possess the-T g s,and the lowest T g(-28.9 ℃) exists for the membrane with double mass of H3PO4 doped as well.The high proton conductivity in a range of 9.4―17.3 mS/cm with the corresponding water uptake of 19.1%―32.8% of the membranes was detected at 90 oC under wet conditions.Meanwhile,the proton conductivity in a dry environment for the membrane with a mass ratio of 2.4 of BT-TES to A-TES and double H3PO4 loading increases from 4.89×10-2 mS/cm at 30 ℃ to 25.7 mS/cm at 140 ℃.The excellent proton transport ability under both hydrous and anhydrous conditions demonstrates a potential application in the polymer electrolyte membrane fuel cells.展开更多
The recently introduced even-odd rule has been shown to successfully represent chemical structures of ions and molecules. While comparing available drawings in the scientific literature with the list of compounds pred...The recently introduced even-odd rule has been shown to successfully represent chemical structures of ions and molecules. While comparing available drawings in the scientific literature with the list of compounds predicted by the even-odd rule, it became however obvious that existing compounds are fewer than expected. Several predicted compounds involving many covalent bonds have apparently never been experimentally observed. Neutral oxygen for instance is expected to have 6 valence electrons, whereas oxygen can only build a maximum of two bonds, as in water. This specificity is observed for elements in the top-right corner of the periodic table. For compounds to contain only single covalent bonds, and thus follow the even-odd rule, further explanations are necessary. The present paper proposes that those specific elements experience a transfer of electrons from the valence shell into the inner shell, making them unavailable for further bonding. These elements will be described as organic, hereby providing a clear and hopefully unifying definition of the term. In opposition, inorganic elements have a constant inner shell no matter their electrical state or the number of bonds they maintain. More than 70 compounds involving 11 elements of the main group are studied, revealing a progression from fully inorganic elements at the left of the periodic table to fully organic elements. The transition between inorganic or organic elements is made of few elements that take an organic form when negatively charged;they are labelled semi-organic. The article concludes that the fully organic elements of the main group are Oxygen and Fluorine, whereas semi-organic elements are more numerous: C, N, S, Cl, Se, Br and I. Thus, the even-odd rule becomes fully compatible with scientific knowledge of compounds in liquid or gaseous phase.展开更多
The photochemical mineralization of dissolved organic carbon(DOC) to dissolved inorganic carbon(DIC) is a key process in carbon cycling.Using a Suntest CPS solar simulator,Suwannee River humic acid(SRHA) was photooxid...The photochemical mineralization of dissolved organic carbon(DOC) to dissolved inorganic carbon(DIC) is a key process in carbon cycling.Using a Suntest CPS solar simulator,Suwannee River humic acid(SRHA) was photooxidated to examine the effects of O2 levels,the wavelength of incident light,and the concentration of Fe on the photoproduction of DIC.Increasing the O2 abundance enhanced photodegradation of SRHA.The rate of DIC photoproduction under air saturation in the first 24 h(4.40 μmol/(L h)) was increased by a factor of 1.56 under O2 saturation,but fell by only 36% under N2 saturation.To evaluate the relative importance of UV-B,UV-A,and visible radiation in the photodegradation,we examined the above process using Mylar-d films and UF-3 and UF-4 plexiglass filters.The results indicated that the UV-B,UV-A and visible wavelengths accounted for 31.8%,32.6% and 25.6%,respectively,of DIC production with simulated sunlight irradiation.The above results also indicated that photoproduction of DIC could take place in natural water at depths greater than those that UV light can reach.When 20 μmol/L desferrioxamine mesylate(DFOM,a strong Fe complexing ligand) was added,the rate of DIC photoproduction fell to 55.6% that of the original SRHA samples with 5.46 μmol/L Fe.展开更多
Following the introduction of the new even-odd and isoelectronic rules and definitions affecting the understanding of electronic structure and bonds, the author has thought necessary to summarize understandings in the...Following the introduction of the new even-odd and isoelectronic rules and definitions affecting the understanding of electronic structure and bonds, the author has thought necessary to summarize understandings in the form of a table. The classical periodic table, a simple tool used by generations of physicists, is here extended to become a useful tool aimed specifically at chemists. In chemistry, position and number of covalent bonds of each atom are needed, as well as the exact location of charges. The table gives the number of possible bonds for each element and reveals how it is affected by charges. Additionally, the specific table indicates for each atom its isoelectronic elements and highlights the distinction between organic and inorganic elements. Discussion is led on the first two rows of the table by successfully comparing its statement with more than 50 well-known liquid and gaseous compounds.展开更多
For some hundred surface sediment samples from five cores taken in two cruises near the Huanghe River Estuary, total phosphorus (TP (.inorganic phosphorus (IP (and organic phosphorus (OP)were determined.On the average...For some hundred surface sediment samples from five cores taken in two cruises near the Huanghe River Estuary, total phosphorus (TP (.inorganic phosphorus (IP (and organic phosphorus (OP)were determined.On the average, 527×10-6, 455×10~6 and 72×10-6 were found for TP,IP and OP for the surface sediments taken in the two cruises. The distribution of OP and IP was controlled by the sample particle size: OP content increased with the decreasing of the sample particle size, while the maximal value of IP was found in the silt fraction due to the existence of apatite in our samples. Vertical distributions reflected well the channel change of the Huanghe River. Results from the multiple regressions between the three forms of phosphorus and the percentages of different particle size agreed well with the analytical data.展开更多
The advantages and disadvantages of organic antioxidant and inorganic salt on suppressing coal oxidation were analyzed on the basis of the theory that coal oxidation mechanisms can be attributed to the free radical ch...The advantages and disadvantages of organic antioxidant and inorganic salt on suppressing coal oxidation were analyzed on the basis of the theory that coal oxidation mechanisms can be attributed to the free radical chain-type reaction mechanism. The inhibition curves on suppressing coal oxidation of the different type and different concentration of organic antioxidant and inorganic salt were given through experimental study and data processing. Then some conclusions can be gained from the experimental study combining with theoretical analysis. First the inhibition mechanism of the organic antioxidant and inorganic salt is different. The former is that the chemical action is the dominant position. It can be called as the chain termination theory because the free radical is captured during coal oxidation. And the later is that the physical effect is the dominant position. It can be called as the decreasing-temperature theory because the liquid membrane which was formed by the inorganic salt can make coal body be the state of wetness and prevent oxygen from coal surface. Second the inhibition effect of the organic antioxidant is higher than the inorganic salt in the later period. But it is lower in the early period.展开更多
A method for the simultaneous separation and determination of organic acids and inorganic anions in Bayer liquors was developed by gradient ion chromatography with suppressed conductivity detection. Formate, acetate, ...A method for the simultaneous separation and determination of organic acids and inorganic anions in Bayer liquors was developed by gradient ion chromatography with suppressed conductivity detection. Formate, acetate, propionate, oxalate, succinate, glutarate, fluoride, chloride and sulfate were separated and determined in 33 min. The samples were pretreated with solid-phase extraction, which has high selectivity for removing a large number of metallic ions in the Bayer liquors, and filtered with a 0.45 μm filter membrane before being injected into the ion chromatographic system. The separation of six organic acids and three inorganic anions was achieved on an IonPac AS11-HC column with KOH as the eluent, and the detection was performed by a conductivity detection mode. No interference is found in the presence of fluorate, chlorate and sulphate when organic acids are determined. The calibration graphs of peak area for all the analytes are linear over a wide range. The relative standard derivation of the peak area of analytes is less than 2.14%. Under optimum conditions the detection ranges from 0.2 to 100.0 mg/L. The average recoveries of the added standards are between 94.3% and 102.8%.展开更多
Water can be used as oxidant in conjunction with metal particles to form metal-water propellant to increase the energy of propellant.For this application,water needs to be stored in form of solid and capable of becomi...Water can be used as oxidant in conjunction with metal particles to form metal-water propellant to increase the energy of propellant.For this application,water needs to be stored in form of solid and capable of becoming liquid when use.Stable and thixotropic hydrogel has good potential as water-retaining material and oxidant of metal-based propellant.In this study,we prepared organic/inorganic composite hydrogels by combining inorganic gellants hectorite and fumed silica with organic gellant agarose,respectively.The total content of the gellants can be reduced to less than 2%by adding agarose.The influence of agarose on water content,phase transition temperature,centrifugal stability and other basic physical properties of composite hydrogels were discussed.The results show that the composite hydrogels have better thixotropy and stability than pure inorganic hydrogels,and the gel-sol transformation can be realized by applying shear force or heating to the phase transition temperature.The composite hydrogels have good shear thinning ability and improved mechanical stability.Fumed silica/agarose hydrogels have better physical stability,while the thixotropy and shear thinning ability of hectorite/agarose hydrogels are better.展开更多
The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocomposites membrane materials and their lithium salt complexes have been found thermally stable below ...The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocomposites membrane materials and their lithium salt complexes have been found thermally stable below 200 °C. The conductivity of the organic/inorganic nanocomposites polymer electrolytes prepared at room temperature was at magnitude range of 10(?6) S/cm.展开更多
Organic and inorganic carbon contents of marine sediments are important to reconstruct marine productivity,global carbon cycle, and climate change. A proper method to separate and determine organic and inorganic carbo...Organic and inorganic carbon contents of marine sediments are important to reconstruct marine productivity,global carbon cycle, and climate change. A proper method to separate and determine organic and inorganic carbons is thus of great necessity. Although the best method is still disputable, the acid leaching method is widely used in many laboratories because of its ease-of-use and high accuracy. The results of the elemental analysis of sediment trap samples reveal that organic and inorganic carbon contents cannot be obtained using the acid leaching method, causing an infinitely amplified error when the carbon content of the decarbonated sample is 12%±1% according to a mathematical derivation. Acid fumigation and gasometric methods are used for comparison, which indicates that other methods can avoid this problem in organic carbon analysis. For the first time, this study uncovers the pitfalls of the acid leaching method, which limits the implication in practical laboratory measurement, and recommends alternative solutions of organic/inorganic carbon determination in marine sediments.展开更多
The proper use of organic and inorganic nutrient sources is important to sustain high levels of crop production, while maintaining or enhancing soil and environmental quality. A 4-year (2009 to 2012) field experiment ...The proper use of organic and inorganic nutrient sources is important to sustain high levels of crop production, while maintaining or enhancing soil and environmental quality. A 4-year (2009 to 2012) field experiment was established in spring 2009 on a Gray Luvisol (Typic Haplocryalf) loam soil at Star City, Saskatchewan, Canada, to determine the effectiveness of organic/biological (compost, wood ash [fine and granular], alfalfa pellets, distiller grain, thin stillage, glycerol, fish food additive, Penicillium bilaiae), inorganic/mineral (granular-gypsum, rapid release elemental S [RRES], rock phosphate [granular and fine]) and chemical/synthetic (granular-ammonium nitrate, triple super phosphate and potassium sulphate) nutrient sources (amendments/chemicals) in improving seed yield, straw yield, seed quality and nutrient uptake (N, P, K and S) in seed + straw of canola. Combined application of N, P and S chemical fertilizers (NPS) produced considerably greater seed yield, straw yield and nutrient uptake of canola compared to the unamended control in all four years. In treatments receiving only organic amendments, thin stillage produced the greatest seed yield, straw yield and nutrient uptake in all years, and it was similar to the NPS balanced fertilizer treatment, while fish food additive and distiller grain dry of wheat in 2009, 2011 and 2012, distiller grain dry of corn in 2009 and 2012, and compost and alfalfa pellets in 2011 and 2012 produced significantly greater seed yield, straw yield and nutrient uptake, when compared to the control. In treatments where chemical fertilizers were also applied, in addition to organic amendments, ap- plication of N fertilizer increased seed yield, straw yield and nutrient uptake substantially when combined with wood ash fine in 2009, 2010, 2011 and 2012, wood ash granular in 2009, 2011 and 2012, and glycerol in 2009 and 2012 (moderate increase in 2012). In the chemical fertilizer treatments, there was a reduction in seed yield, straw yield and nutrient uptake of canola when only N fertilizer was applied compared to the control (significant in 2010 and 2011). Application of P along with N (NP) increased seed yield, straw yield and nutrient uptake of canola compared to N alone treatment, but was less than the NPS treatment in all years. Application of S along with N (NS) increased seed yield, straw yield and nutrient uptake of canola further compared to the NP treatment, but it was still lower than the NPS treatment in 2010 and 2011. In treatments receiving inorganic/mineral amendments in addition to chemical fertilizers, application of N + P fertilizers substantially increased seed yield, straw yield and nutrient uptake in treatments receiving gypsum and RRES in 2009, 2010, 2011 and 2012. This suggests the potential of gypsum and RRES in preventing S deficiency in organic crops when grown on S-deficient soils, provided other nutrients are not limiting in the soil for crop growth. Seed yield, straw yield and nutrient uptake with application of N and S fertilizers in combination with rock phosphate and/or Penicillium bilaiae were similar to N + S treatment in most cases, except in 2011 when application of finely-ground or powder rock phosphate in a combination with N + S produced significantly greater yield and nutrient uptake than N + S with granular rock phosphate. This suggests little contribution of rock phosphate and/or Penicillium bilaiae in improving yield and nutrient uptake of canola, and improves the performance of fine rock phosphate only evident in the third growing season in 2011, after three consecutive applications, but not in 2012. In conclusion, some organic amendments showed potential for improvement in organic crop production, and in some other cases highest yield and nutrient uptake were展开更多
For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is ch...For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is challenging to effectively optimize this interface as it is buried beneath the perovskite film.Herein,we have designed and synthesized a series of multifunctional organic-inorganic(OI)complexes as buried interfacial material to promote electron extraction,as well as the crystal growth of the perovskite.The OI complex with BF4−group not only eliminates oxygen vacancies on the SnO_(2) surface but also balances energy level alignment between SnO_(2) and perovskite,providing a favorable environment for charge carrier extraction.Moreover,OI complex with amine(−NH_(2))functional group can regulate the crystallization of the perovskite film via interaction with PbI2,resulting in highly crystallized perovskite film with large grains and low defect density.Consequently,with rational molecular design,the PSCs with optimal OI complex buried interface layer which contains both BF4−and−NH_(2) functional groups yield a champion device efficiency of 23.69%.More importantly,the resulting unencapsulated device performs excellent ambient stability,maintaining over 90%of its initial efficiency after 2000 h storage,and excellent light stability of 91.5%remaining PCE in the maximum power point tracking measurement(under continuous 100 mW cm−2 light illumination in N2 atmosphere)after 500 h.展开更多
基金financially supported by the Sichuan Science and Technology Program (2023YFH0086, 2023YFH0085, 2023YFH0087 and 2023NSFSC0990)the State Key Laboratory of Polymer Materials Engineering (sklpme2022-3-02 and sklpme2023-2-11)the Tibet Foreign Experts Program (2022wz002)
文摘Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with high charge carrier mobility usually have planar and conjugated structures,thereby showing strong absorption in visible region.In this work,a new concept of incorporating transparent inorganic semiconductors is proposed for high-performance STOPVs.Copper(I)thiocyanate(CuSCN)is a visible-transparent inorganic semiconductor with an ionization potential of 5.45 eV and high hole mobility.The transparency of CuSCN benefits high average visible transmittance(AVT)of STOPVs.The energy levels of CuSCN as donor match those of near-infrared small molecule acceptor BTP-eC9,and the formed heterojunction exhibits an ability of exciton dissociation.High mobility of CuSCN contributes to a more favorable charge transport channel and suppresses charge recombination.The control STOPVs based on PM6/BTP-eC9 exhibit an AVT of 19.0%with a power conversion efficiency(PCE)of 12.7%.Partial replacement of PM6 with CuSCN leads to a 63%increase in transmittance,resulting in a higher AVT of 30.9%and a comparable PCE of 10.8%.
基金supported by Japanese Government (MEXT) Scholarship Program 2016–2019, Japan
文摘We investigated the effects of integrated organic and inorganic fertilizers on the growth and yield of indica rice variety Manawthukha and japonica rice variety Genkitsukushi.In a split-plot design,the two rice varieties were assigned as main plot factors,and the integrated treatments were the subplot factors,including no-N fertilizer(N0),50%chemical fertilizer(CF)(CF50),100%CF(CF100),50%CF+50%poultry manure(PM)(CF50PM50),50%CF+50%cow manure(CM)(CF50CM50),and 50%CF+50%compost(CP)(CF50CP50).CF100 was equivalent to N at 85 kg/hm2.Manure was applied based on the estimated mineralizable nitrogen(EMN)level,which is dependent on total N(%)of each manure type.Manawthukha rice plants were taller with higher tiller number and dry matter content.However,higher soil-plant analysis development(SPAD)values were measured in Genkitsukushi throughout the crop growth period,resulting in higher seed-setting rate(%)and greater yield.At the same N level,CF50PM50 application in both rice varieties resulted in higher SPAD values,plant height and tiller number than CF100.CF50PM50 containing total N more than 4%supplied synchronized N for the demands of the rice plants,resulting in maximum dry matter,yield and yield components.CF50CM50 and CF50CP50 treatments containing total N less than 4%resulted in lower yields which were similar to CF100.These results indicated that integrating organic and inorganic fertilizers enhanced growth parameters and yields of Manawthukha and Genkitsukushi,while reducing the dose of chemical fertilizer.
基金The National Natural Science Foundation of China under contract No.41076093the Fundamental Research Funds for the Central Universities
文摘The effects of temperature and different forms of nutrients on Chattonella marina growth have been investigated in strains isolated from the Daya Bay, the South China Sea. The strain of C. marina preferred high temperatures, with an optimal temperature of 25℃, and 18℃ was the minimum for its survival. Higher cell number and growth rate were obtained in high nitrogen and phosphorus concentrations (500 μg/L, 74μg/L) than under nutrient limitation. Nitrogen influenced the growth most, as the specific growth rate and maximum cell density were lower in nitrogen- limited cultures than noted under phosphorus limitation or under limitation from both. C. marina was capable of using many kinds of organic nitrogen sources including L-serine (L-Ser), glycine (Gly), alanine (Ala), L-threonine (L-Thr), glutamic acid (Glu) and urea, but could not utilize uric acid. Various forms of organic phosphorus compound such as glucose-6-phosphate (G6P), sodium glycerophosphate (GYP), adenosine triphosphate (ATP), adenosine monophosphate (AMP), cyti- dine monophosphate (CMP), guanosine monophosphate (GMP), uridine monophosphate (UMP), 4-nitrophenylphosphate (NPP) and triethyl phosphate (TEP) supported the growth as well. Algal cells had the ability to sustain growth under nitrogenand/or phosphorus-free conditions particularly under phosphorus depleted condition. These results led to the hypothesis that high loading of nitrogen has played an important role in frequent C. marina blooms in the past decade, and its capability for utilization of diverse forms of organic nutrients and growth in low nutrient conditions make this species a likely recurrent dominant in the Daya Bay phytoplankton assemblages, visible as more frequent blooms.
基金Project supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No.G1999011806).
文摘Citrate, oxalate, tartrate and malate were added into soils during the growthperiod of ryegrass to study the effect of different organic ligands on the release of variousinorganic P (Pi) fractions in a yellow-brown soil and a paddy soil. The results showed that oxalatewas most effective in promoting the release of total Pi in the yellow-brown soil and tartrate in thepaddy soil. The dominant Pi fractions released from the yellow-brown soil were calcium phosphate(Ca-P) and aluminum phosphate (Al-P) and those from the paddy soil were iron phosphate (Fe-P) andreductant soluble phosphate (O-P) mobilized by tartrate. Phosphorous-mobilizing capability oforganic acids in the yellow-brown soil revealed the following order: oxalate > citrate > malate >tartrate. In the paddy soil, the order was tartrate > citrate ≈ oxalate > malate. It wasdemonstrated that organic ligands were different in their capabilities of mobilizing Pi and the sameorganic ligand showed also a discrepancy in mobilizing P in different soils. Although the additionof organic ligands into soils could increase the amount of P taken up by ryegrass, the more uptakeof P, however, was not only due to the more release of Pi, but also partly from organic P. In manycases, organic ligands promoted the release of the total Pi, while different fractions showeddifferent trends: some increased and others decreased.
文摘Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPhS in a mixed acid solution of nitric and sulfuric acids at about 60 ℃. Their molecular structures were determined by DRIFTS, 1H NMR, 13C NMR spectra analysis. The thermal analysis shows that ODNPhS is an explosive that detonates at about 420 ℃.
基金Supported by Black Soil Conservation Tillage and Oriented Cultivation Technology Research (GB06B107-1)Innovation Fund of Northeast Agricultural University (CXP7003-3-3)+1 种基金Northeast Agricultural University and the Scientific Research Fund of Heilongjiang Province to Black CollegesUniversities Cold Key Laboratory of Utilization and Protection of Open-funded Projects (GXS08-5)
文摘By two years (2007-2008) located fertilizer experiment, the effect of long-term combined application of organic and inorganic fertilizers on black soil fertility and crop yield was investigated in Shuangcheng City, Heilongjiang Province. The results showed that the combined application of organic and inorganic fertilizers could increase the organinc matter, alkaline nitrogen, available phosphorus and available potassium. At the same time, the increasing application of organic fertilizer could reduce the soil bulk density and improve the field moisture capacity. Field moisture capacity and organic matter of the combined application of high quantities of organic manure and inorganic fertilizers AtB5 treatment increased the fhstest, organic matter increased by 3.33 g. kg and field moisture capacity increased by 11.25% than the beginning of the experiment. Under the same fertilization, the combined application of organic and inorganic fertilizers' increasing production range was higher than the single chemical fertilizers' which was from 0.8% to 9.4%. The results showed that the combined application of organic and inorganic fertilizers could increase the nutrient contents of soil and also was the highest productivity contribution to black soil fertility. It was the best fertilization structure of increasing productivity level and improving the soil fertility.
基金supported by the National Basic Research Program of China (No. 2002CB412504)
文摘Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concen- trations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region, Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%:t:0.05% and 1.8%--0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riv- erine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95× 10^5 t of DIC, 0.64× 10^5 t of DOC, 78.58× 10^5 t of PIC and 2.29× 10^5 t of POC to the sea.
文摘The distribution of the various organic and inorganic constituents and their influences on the combustion of coal has been comprehensively studied.However,the combustion characteristics of pulverized coal depend not only on rank but also on the composition,distribution,and combination of the macerals.Unlike the proximate and ultimate analyses,determining the macerals in coal involves the use of sophisticated microscopic instrumentation and expertise.In this study,an attempt was made to predict the amount of macerals(vitrinite,inertinite,and liptinite)and total mineral matter from the Witbank Coalfields samples using the multiple input single output white-box artificial neural network(MISOWB-ANN),gene expression programming(GEP),multiple linear regression(MLR),and multiple nonlinear regression(MNLR).The predictive models obtained from the multiple soft computing models adopted are contrasted with one another using difference,efficiency,and composite statistical indicators to examine the appropriateness of the models.The MISOWB-ANN provides a more reliable predictive model than the other three models with the lowest difference and highest efficiency and composite statistical indicators.
基金Supported by the National Natural Science Foundation of China(No.50973100)
文摘A series of novel amphibious organic/inorganic hybrid proton exchange membranes with H3PO4 doped which could be used under both wet and dry conditions was prepared through a sol-gel process based on acrylated triethoxysilane(A-TES) and benzyltetrazole-modified triethoxysilane(BT-TES).The dual-curing approach including UV-curing and thermal curing was used to obtain the crosslinked membranes.Polyethylene glycol(400) diacrylate(PEGDA) was used as an oligomer to form the polymeric matrix.The molecular structures of precursors were characterized by 1 H,13 C and 29 Si NMR spectra.The thermogravimetric analysis(TGA) results show that the membranes exhibit acceptable thermal stability for their application at above 200 oC.The differential scanning calorimeter(DSC) determination indicates that the crosslinked membranes with the mass ratios of below 1.6 of BT-TES to A-TES and the same mass of H3PO4 doped as that of A-TES possess the-T g s,and the lowest T g(-28.9 ℃) exists for the membrane with double mass of H3PO4 doped as well.The high proton conductivity in a range of 9.4―17.3 mS/cm with the corresponding water uptake of 19.1%―32.8% of the membranes was detected at 90 oC under wet conditions.Meanwhile,the proton conductivity in a dry environment for the membrane with a mass ratio of 2.4 of BT-TES to A-TES and double H3PO4 loading increases from 4.89×10-2 mS/cm at 30 ℃ to 25.7 mS/cm at 140 ℃.The excellent proton transport ability under both hydrous and anhydrous conditions demonstrates a potential application in the polymer electrolyte membrane fuel cells.
文摘The recently introduced even-odd rule has been shown to successfully represent chemical structures of ions and molecules. While comparing available drawings in the scientific literature with the list of compounds predicted by the even-odd rule, it became however obvious that existing compounds are fewer than expected. Several predicted compounds involving many covalent bonds have apparently never been experimentally observed. Neutral oxygen for instance is expected to have 6 valence electrons, whereas oxygen can only build a maximum of two bonds, as in water. This specificity is observed for elements in the top-right corner of the periodic table. For compounds to contain only single covalent bonds, and thus follow the even-odd rule, further explanations are necessary. The present paper proposes that those specific elements experience a transfer of electrons from the valence shell into the inner shell, making them unavailable for further bonding. These elements will be described as organic, hereby providing a clear and hopefully unifying definition of the term. In opposition, inorganic elements have a constant inner shell no matter their electrical state or the number of bonds they maintain. More than 70 compounds involving 11 elements of the main group are studied, revealing a progression from fully inorganic elements at the left of the periodic table to fully organic elements. The transition between inorganic or organic elements is made of few elements that take an organic form when negatively charged;they are labelled semi-organic. The article concludes that the fully organic elements of the main group are Oxygen and Fluorine, whereas semi-organic elements are more numerous: C, N, S, Cl, Se, Br and I. Thus, the even-odd rule becomes fully compatible with scientific knowledge of compounds in liquid or gaseous phase.
基金Supported by the National Science and Engineering Research Committee of Canada (No213327)
文摘The photochemical mineralization of dissolved organic carbon(DOC) to dissolved inorganic carbon(DIC) is a key process in carbon cycling.Using a Suntest CPS solar simulator,Suwannee River humic acid(SRHA) was photooxidated to examine the effects of O2 levels,the wavelength of incident light,and the concentration of Fe on the photoproduction of DIC.Increasing the O2 abundance enhanced photodegradation of SRHA.The rate of DIC photoproduction under air saturation in the first 24 h(4.40 μmol/(L h)) was increased by a factor of 1.56 under O2 saturation,but fell by only 36% under N2 saturation.To evaluate the relative importance of UV-B,UV-A,and visible radiation in the photodegradation,we examined the above process using Mylar-d films and UF-3 and UF-4 plexiglass filters.The results indicated that the UV-B,UV-A and visible wavelengths accounted for 31.8%,32.6% and 25.6%,respectively,of DIC production with simulated sunlight irradiation.The above results also indicated that photoproduction of DIC could take place in natural water at depths greater than those that UV light can reach.When 20 μmol/L desferrioxamine mesylate(DFOM,a strong Fe complexing ligand) was added,the rate of DIC photoproduction fell to 55.6% that of the original SRHA samples with 5.46 μmol/L Fe.
文摘Following the introduction of the new even-odd and isoelectronic rules and definitions affecting the understanding of electronic structure and bonds, the author has thought necessary to summarize understandings in the form of a table. The classical periodic table, a simple tool used by generations of physicists, is here extended to become a useful tool aimed specifically at chemists. In chemistry, position and number of covalent bonds of each atom are needed, as well as the exact location of charges. The table gives the number of possible bonds for each element and reveals how it is affected by charges. Additionally, the specific table indicates for each atom its isoelectronic elements and highlights the distinction between organic and inorganic elements. Discussion is led on the first two rows of the table by successfully comparing its statement with more than 50 well-known liquid and gaseous compounds.
基金This project was Supported by the National Science Foundation of China
文摘For some hundred surface sediment samples from five cores taken in two cruises near the Huanghe River Estuary, total phosphorus (TP (.inorganic phosphorus (IP (and organic phosphorus (OP)were determined.On the average, 527×10-6, 455×10~6 and 72×10-6 were found for TP,IP and OP for the surface sediments taken in the two cruises. The distribution of OP and IP was controlled by the sample particle size: OP content increased with the decreasing of the sample particle size, while the maximal value of IP was found in the silt fraction due to the existence of apatite in our samples. Vertical distributions reflected well the channel change of the Huanghe River. Results from the multiple regressions between the three forms of phosphorus and the percentages of different particle size agreed well with the analytical data.
文摘The advantages and disadvantages of organic antioxidant and inorganic salt on suppressing coal oxidation were analyzed on the basis of the theory that coal oxidation mechanisms can be attributed to the free radical chain-type reaction mechanism. The inhibition curves on suppressing coal oxidation of the different type and different concentration of organic antioxidant and inorganic salt were given through experimental study and data processing. Then some conclusions can be gained from the experimental study combining with theoretical analysis. First the inhibition mechanism of the organic antioxidant and inorganic salt is different. The former is that the chemical action is the dominant position. It can be called as the chain termination theory because the free radical is captured during coal oxidation. And the later is that the physical effect is the dominant position. It can be called as the decreasing-temperature theory because the liquid membrane which was formed by the inorganic salt can make coal body be the state of wetness and prevent oxygen from coal surface. Second the inhibition effect of the organic antioxidant is higher than the inorganic salt in the later period. But it is lower in the early period.
基金Project(2005CB623702) supported by the National Key Basic Research Program of China
文摘A method for the simultaneous separation and determination of organic acids and inorganic anions in Bayer liquors was developed by gradient ion chromatography with suppressed conductivity detection. Formate, acetate, propionate, oxalate, succinate, glutarate, fluoride, chloride and sulfate were separated and determined in 33 min. The samples were pretreated with solid-phase extraction, which has high selectivity for removing a large number of metallic ions in the Bayer liquors, and filtered with a 0.45 μm filter membrane before being injected into the ion chromatographic system. The separation of six organic acids and three inorganic anions was achieved on an IonPac AS11-HC column with KOH as the eluent, and the detection was performed by a conductivity detection mode. No interference is found in the presence of fluorate, chlorate and sulphate when organic acids are determined. The calibration graphs of peak area for all the analytes are linear over a wide range. The relative standard derivation of the peak area of analytes is less than 2.14%. Under optimum conditions the detection ranges from 0.2 to 100.0 mg/L. The average recoveries of the added standards are between 94.3% and 102.8%.
基金the Haihe Laboratory of Sustainable Chemical Transformations for financial support。
文摘Water can be used as oxidant in conjunction with metal particles to form metal-water propellant to increase the energy of propellant.For this application,water needs to be stored in form of solid and capable of becoming liquid when use.Stable and thixotropic hydrogel has good potential as water-retaining material and oxidant of metal-based propellant.In this study,we prepared organic/inorganic composite hydrogels by combining inorganic gellants hectorite and fumed silica with organic gellant agarose,respectively.The total content of the gellants can be reduced to less than 2%by adding agarose.The influence of agarose on water content,phase transition temperature,centrifugal stability and other basic physical properties of composite hydrogels were discussed.The results show that the composite hydrogels have better thixotropy and stability than pure inorganic hydrogels,and the gel-sol transformation can be realized by applying shear force or heating to the phase transition temperature.The composite hydrogels have good shear thinning ability and improved mechanical stability.Fumed silica/agarose hydrogels have better physical stability,while the thixotropy and shear thinning ability of hectorite/agarose hydrogels are better.
文摘The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocomposites membrane materials and their lithium salt complexes have been found thermally stable below 200 °C. The conductivity of the organic/inorganic nanocomposites polymer electrolytes prepared at room temperature was at magnitude range of 10(?6) S/cm.
基金The National Natural Science Foundation of China under contract Nos 41530964,41776047,41876048 and 91528304。
文摘Organic and inorganic carbon contents of marine sediments are important to reconstruct marine productivity,global carbon cycle, and climate change. A proper method to separate and determine organic and inorganic carbons is thus of great necessity. Although the best method is still disputable, the acid leaching method is widely used in many laboratories because of its ease-of-use and high accuracy. The results of the elemental analysis of sediment trap samples reveal that organic and inorganic carbon contents cannot be obtained using the acid leaching method, causing an infinitely amplified error when the carbon content of the decarbonated sample is 12%±1% according to a mathematical derivation. Acid fumigation and gasometric methods are used for comparison, which indicates that other methods can avoid this problem in organic carbon analysis. For the first time, this study uncovers the pitfalls of the acid leaching method, which limits the implication in practical laboratory measurement, and recommends alternative solutions of organic/inorganic carbon determination in marine sediments.
文摘The proper use of organic and inorganic nutrient sources is important to sustain high levels of crop production, while maintaining or enhancing soil and environmental quality. A 4-year (2009 to 2012) field experiment was established in spring 2009 on a Gray Luvisol (Typic Haplocryalf) loam soil at Star City, Saskatchewan, Canada, to determine the effectiveness of organic/biological (compost, wood ash [fine and granular], alfalfa pellets, distiller grain, thin stillage, glycerol, fish food additive, Penicillium bilaiae), inorganic/mineral (granular-gypsum, rapid release elemental S [RRES], rock phosphate [granular and fine]) and chemical/synthetic (granular-ammonium nitrate, triple super phosphate and potassium sulphate) nutrient sources (amendments/chemicals) in improving seed yield, straw yield, seed quality and nutrient uptake (N, P, K and S) in seed + straw of canola. Combined application of N, P and S chemical fertilizers (NPS) produced considerably greater seed yield, straw yield and nutrient uptake of canola compared to the unamended control in all four years. In treatments receiving only organic amendments, thin stillage produced the greatest seed yield, straw yield and nutrient uptake in all years, and it was similar to the NPS balanced fertilizer treatment, while fish food additive and distiller grain dry of wheat in 2009, 2011 and 2012, distiller grain dry of corn in 2009 and 2012, and compost and alfalfa pellets in 2011 and 2012 produced significantly greater seed yield, straw yield and nutrient uptake, when compared to the control. In treatments where chemical fertilizers were also applied, in addition to organic amendments, ap- plication of N fertilizer increased seed yield, straw yield and nutrient uptake substantially when combined with wood ash fine in 2009, 2010, 2011 and 2012, wood ash granular in 2009, 2011 and 2012, and glycerol in 2009 and 2012 (moderate increase in 2012). In the chemical fertilizer treatments, there was a reduction in seed yield, straw yield and nutrient uptake of canola when only N fertilizer was applied compared to the control (significant in 2010 and 2011). Application of P along with N (NP) increased seed yield, straw yield and nutrient uptake of canola compared to N alone treatment, but was less than the NPS treatment in all years. Application of S along with N (NS) increased seed yield, straw yield and nutrient uptake of canola further compared to the NP treatment, but it was still lower than the NPS treatment in 2010 and 2011. In treatments receiving inorganic/mineral amendments in addition to chemical fertilizers, application of N + P fertilizers substantially increased seed yield, straw yield and nutrient uptake in treatments receiving gypsum and RRES in 2009, 2010, 2011 and 2012. This suggests the potential of gypsum and RRES in preventing S deficiency in organic crops when grown on S-deficient soils, provided other nutrients are not limiting in the soil for crop growth. Seed yield, straw yield and nutrient uptake with application of N and S fertilizers in combination with rock phosphate and/or Penicillium bilaiae were similar to N + S treatment in most cases, except in 2011 when application of finely-ground or powder rock phosphate in a combination with N + S produced significantly greater yield and nutrient uptake than N + S with granular rock phosphate. This suggests little contribution of rock phosphate and/or Penicillium bilaiae in improving yield and nutrient uptake of canola, and improves the performance of fine rock phosphate only evident in the third growing season in 2011, after three consecutive applications, but not in 2012. In conclusion, some organic amendments showed potential for improvement in organic crop production, and in some other cases highest yield and nutrient uptake were
基金The authors acknowledge the financial support from the Natural Science Foundation of China(Nos.21931002 and 22101123)the National Key Research and Development Program of China(2018YFB0704100)+4 种基金the Shenzhen Science and Technology Innovation Committee(no.JCYJ20200109140812302)the Leading talents of Guangdong province program(2016LJ06N507)the Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(no.2018B030322001)the Guangdong Provincial Key Laboratory of Catalysis(no.2020B121201002)Outstanding Talents Training Fund in Shenzhen.
文摘For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is challenging to effectively optimize this interface as it is buried beneath the perovskite film.Herein,we have designed and synthesized a series of multifunctional organic-inorganic(OI)complexes as buried interfacial material to promote electron extraction,as well as the crystal growth of the perovskite.The OI complex with BF4−group not only eliminates oxygen vacancies on the SnO_(2) surface but also balances energy level alignment between SnO_(2) and perovskite,providing a favorable environment for charge carrier extraction.Moreover,OI complex with amine(−NH_(2))functional group can regulate the crystallization of the perovskite film via interaction with PbI2,resulting in highly crystallized perovskite film with large grains and low defect density.Consequently,with rational molecular design,the PSCs with optimal OI complex buried interface layer which contains both BF4−and−NH_(2) functional groups yield a champion device efficiency of 23.69%.More importantly,the resulting unencapsulated device performs excellent ambient stability,maintaining over 90%of its initial efficiency after 2000 h storage,and excellent light stability of 91.5%remaining PCE in the maximum power point tracking measurement(under continuous 100 mW cm−2 light illumination in N2 atmosphere)after 500 h.