In this paper,an active fault accommodate strategy is proposed for the plant in the presence of actuator fault and input constraints,which is a combination of a direct adaptive control algorithm with multiple model sw...In this paper,an active fault accommodate strategy is proposed for the plant in the presence of actuator fault and input constraints,which is a combination of a direct adaptive control algorithm with multiple model switching.The μ-modification is introduced in the model reference architecture to construct the adaptive controller.The proof of stability is based on the candidate Lyapunov function,while appropriate switching of multiple models guarantees asymptotic tracking of the system states and the boundedness of all signals.Simulation results illustrate the efficiency of the proposed method.展开更多
A new scheme of adaptive control is proposed for a class of linear time-invariant( LTI) dynamical systems,especially in aerospace,with matched parametric uncertainties and input constraints. Based on a typical and c...A new scheme of adaptive control is proposed for a class of linear time-invariant( LTI) dynamical systems,especially in aerospace,with matched parametric uncertainties and input constraints. Based on a typical and conventional direct model reference adaptive control scheme,various modifications have been employed to achieve the goal. "C omposite model reference adaptive control"of higher performance is seam-lessly combined with "positive μ-mod",which consequently results in a smooth tracking trajectory despite of the input constraints. In addition,bounded-gain forgetting is utilized to facilitate faster convergence of parameter estimates. The stability of the closed-loop systemcan be guaranteed by using Lyapunov theory.The merits and effectiveness of the proposed method are illustrated by a numerical example of the longitudinal dynamical systems of a fixed-wing airplane.展开更多
In this paper,we present an optimal neuro-control scheme for continuous-time(CT)nonlinear systems with asymmetric input constraints.Initially,we introduce a discounted cost function for the CT nonlinear systems in ord...In this paper,we present an optimal neuro-control scheme for continuous-time(CT)nonlinear systems with asymmetric input constraints.Initially,we introduce a discounted cost function for the CT nonlinear systems in order to handle the asymmetric input constraints.Then,we develop a Hamilton-Jacobi-Bellman equation(HJBE),which arises in the discounted cost optimal control problem.To obtain the optimal neurocontroller,we utilize a critic neural network(CNN)to solve the HJBE under the framework of reinforcement learning.The CNN's weight vector is tuned via the gradient descent approach.Based on the Lyapunov method,we prove that uniform ultimate boundedness of the CNN's weight vector and the closed-loop system is guaranteed.Finally,we verify the effectiveness of the present optimal neuro-control strategy through performing simulations of two examples.展开更多
Currently most of control methods are of one degree of freedom(1-DOF) control structure for the robot systems which are affected by unmeasurable harmonic disturbances,at the same time in order to obtain perfect dist...Currently most of control methods are of one degree of freedom(1-DOF) control structure for the robot systems which are affected by unmeasurable harmonic disturbances,at the same time in order to obtain perfect disturbance attenuation level,the controller gain must be increased.In practice,however,for robotic actuators,there are physical constraints that limit the amplitude of the available torques.This paper considers the problem of tracking control under input constraints for robot manipulators which are affected by unmeasurable harmonic disturbances.A new control scheme is proposed for the problem,which is composed of a parameter-dependent nonlinear observer and a tracking controller.The parameter-dependent nonlinear observer,designed based on the internal model principle,can achieve an estimation and compensation of a class of harmonic disturbances with unknown frequencies.The tracking controller,designed via adaptive control techniques,can make the systems asymptotically track the desired trajectories.In the control design,the continuous piecewise differentiable increasing function is used to limit control input amplitude,such that the control input saturation is avoided.The Lyapunov stability of closed loop systems is analyzed.To validate proposed control scheme,simulation results are provided for a two link horizontal robot manipulator.The simulation results show that the proposed control scheme ensures asymptotic tracking in presence of an uncertain external disturbance acting on the system.An important feature of the methodology consists of the fact that the designed controller is of 2-DOF control structure,namely,it has the ability to overcome the conflict between controller gain and robustness against external disturbances in the traditional 1 -DOF control structure framework.展开更多
This work studies the problem of control design for linear systems with input saturation.It is well known that integral quadratic constraints(IQC) can be used to describe input saturation and that the use of IQC in an...This work studies the problem of control design for linear systems with input saturation.It is well known that integral quadratic constraints(IQC) can be used to describe input saturation and that the use of IQC in analysis can lead to less conservative performance bound and larger domain of attraction.In this work,it is shown that a class of commonly used IQCs may not help in control synthesis.That is,the use of these IQCs does not enlarge the guaranteed domain of performance for synthesis.展开更多
To solve the problem of attitude tracking of a rigid spacecraft with an either known or measurable desired attitude trajectory, three types of time-varying sliding mode controls are introduced under consideration of c...To solve the problem of attitude tracking of a rigid spacecraft with an either known or measurable desired attitude trajectory, three types of time-varying sliding mode controls are introduced under consideration of control input constraints. The sliding surfaces of the three types initially pass arbitrary initial values of the system, and then shift or rotate to reach predetermined ones. This way, the system trajectories are always on the sliding surfaces, and the system work is guaranteed to have robustness against parameter uncertainty and external disturbances all the time. The controller parameters are optimized by means of genetic algorithm to minimize the index consisting of the weighted index of squared error (ISE) of the system and the weighted penalty term of violation of control input constraint. The stability is verified with Lyapunov method. Compared with the conventional sliding mode control, simulation results show the proposed algorithm having better robustness against inertia matrix uncertainty and external disturbance torques.展开更多
A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and th...A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.展开更多
基金supported by the Aeronautics Science Foundation of China(No.2007ZC52039)the National Natural Science Foundation of China(No.90816023)
文摘In this paper,an active fault accommodate strategy is proposed for the plant in the presence of actuator fault and input constraints,which is a combination of a direct adaptive control algorithm with multiple model switching.The μ-modification is introduced in the model reference architecture to construct the adaptive controller.The proof of stability is based on the candidate Lyapunov function,while appropriate switching of multiple models guarantees asymptotic tracking of the system states and the boundedness of all signals.Simulation results illustrate the efficiency of the proposed method.
基金Supported by Deep Exploration Technology and Experimentation Project(201311194-04)
文摘A new scheme of adaptive control is proposed for a class of linear time-invariant( LTI) dynamical systems,especially in aerospace,with matched parametric uncertainties and input constraints. Based on a typical and conventional direct model reference adaptive control scheme,various modifications have been employed to achieve the goal. "C omposite model reference adaptive control"of higher performance is seam-lessly combined with "positive μ-mod",which consequently results in a smooth tracking trajectory despite of the input constraints. In addition,bounded-gain forgetting is utilized to facilitate faster convergence of parameter estimates. The stability of the closed-loop systemcan be guaranteed by using Lyapunov theory.The merits and effectiveness of the proposed method are illustrated by a numerical example of the longitudinal dynamical systems of a fixed-wing airplane.
基金supported by the National Natural Science Foundation of China(61973228,61973330)
文摘In this paper,we present an optimal neuro-control scheme for continuous-time(CT)nonlinear systems with asymmetric input constraints.Initially,we introduce a discounted cost function for the CT nonlinear systems in order to handle the asymmetric input constraints.Then,we develop a Hamilton-Jacobi-Bellman equation(HJBE),which arises in the discounted cost optimal control problem.To obtain the optimal neurocontroller,we utilize a critic neural network(CNN)to solve the HJBE under the framework of reinforcement learning.The CNN's weight vector is tuned via the gradient descent approach.Based on the Lyapunov method,we prove that uniform ultimate boundedness of the CNN's weight vector and the closed-loop system is guaranteed.Finally,we verify the effectiveness of the present optimal neuro-control strategy through performing simulations of two examples.
基金supported by National Natural Science Foundation of China(Grant No.60736022)
文摘Currently most of control methods are of one degree of freedom(1-DOF) control structure for the robot systems which are affected by unmeasurable harmonic disturbances,at the same time in order to obtain perfect disturbance attenuation level,the controller gain must be increased.In practice,however,for robotic actuators,there are physical constraints that limit the amplitude of the available torques.This paper considers the problem of tracking control under input constraints for robot manipulators which are affected by unmeasurable harmonic disturbances.A new control scheme is proposed for the problem,which is composed of a parameter-dependent nonlinear observer and a tracking controller.The parameter-dependent nonlinear observer,designed based on the internal model principle,can achieve an estimation and compensation of a class of harmonic disturbances with unknown frequencies.The tracking controller,designed via adaptive control techniques,can make the systems asymptotically track the desired trajectories.In the control design,the continuous piecewise differentiable increasing function is used to limit control input amplitude,such that the control input saturation is avoided.The Lyapunov stability of closed loop systems is analyzed.To validate proposed control scheme,simulation results are provided for a two link horizontal robot manipulator.The simulation results show that the proposed control scheme ensures asymptotic tracking in presence of an uncertain external disturbance acting on the system.An important feature of the methodology consists of the fact that the designed controller is of 2-DOF control structure,namely,it has the ability to overcome the conflict between controller gain and robustness against external disturbances in the traditional 1 -DOF control structure framework.
文摘This work studies the problem of control design for linear systems with input saturation.It is well known that integral quadratic constraints(IQC) can be used to describe input saturation and that the use of IQC in analysis can lead to less conservative performance bound and larger domain of attraction.In this work,it is shown that a class of commonly used IQCs may not help in control synthesis.That is,the use of these IQCs does not enlarge the guaranteed domain of performance for synthesis.
文摘To solve the problem of attitude tracking of a rigid spacecraft with an either known or measurable desired attitude trajectory, three types of time-varying sliding mode controls are introduced under consideration of control input constraints. The sliding surfaces of the three types initially pass arbitrary initial values of the system, and then shift or rotate to reach predetermined ones. This way, the system trajectories are always on the sliding surfaces, and the system work is guaranteed to have robustness against parameter uncertainty and external disturbances all the time. The controller parameters are optimized by means of genetic algorithm to minimize the index consisting of the weighted index of squared error (ISE) of the system and the weighted penalty term of violation of control input constraint. The stability is verified with Lyapunov method. Compared with the conventional sliding mode control, simulation results show the proposed algorithm having better robustness against inertia matrix uncertainty and external disturbance torques.
基金This Project was supported by the National Natural Science Foundation of China (60374037 and 60574036)the Opening Project Foundation of National Lab of Industrial Control Technology (0708008).
文摘A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.