For a class of high-order nonlinear multi-agent systems with input hysteresis,an adaptive consensus output-feedback quantized control scheme with full state constraints is investigated.The major properties of the prop...For a class of high-order nonlinear multi-agent systems with input hysteresis,an adaptive consensus output-feedback quantized control scheme with full state constraints is investigated.The major properties of the proposed control scheme are:1)According to the different hysteresis input characteristics of each agent in the multi-agent system,a hysteresis quantization inverse compensator is designed to eliminate the influence of hysteresis characteristics on the system while ensuring that the quantized signal maintains the desired value.2)A barrier Lyapunov function is introduced for the first time in the hysteretic multi-agent system.By constructing state constraint control strategy for the hysteretic multi-agent system,it ensures that all the states of the system are always maintained within a predetermined range.3)The designed adaptive consensus output-feedback quantization control scheme allows the hysteretic system to have unknown parameters and unknown disturbance,and ensures that the input signal transmitted between agents is the quantization value,and the introduced quantizer is implemented under the condition that only its sector bound property is required.The stability analysis has proved that all signals of the closed-loop are semi-globally uniformly bounded.The Star Sim hardware-in-the-loop simulation certificates the effectiveness of the proposed adaptive quantized control scheme.展开更多
A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward contr...A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.展开更多
基金the National Natural Science Foundation of China(61673101,61973131,61733006,U1813201)the Science and Technology Project of Jilin Province(20210509053RQ)the Fourteenth Five Year Science Research Plan of Jilin Province(JJKH20220115KJ)。
文摘For a class of high-order nonlinear multi-agent systems with input hysteresis,an adaptive consensus output-feedback quantized control scheme with full state constraints is investigated.The major properties of the proposed control scheme are:1)According to the different hysteresis input characteristics of each agent in the multi-agent system,a hysteresis quantization inverse compensator is designed to eliminate the influence of hysteresis characteristics on the system while ensuring that the quantized signal maintains the desired value.2)A barrier Lyapunov function is introduced for the first time in the hysteretic multi-agent system.By constructing state constraint control strategy for the hysteretic multi-agent system,it ensures that all the states of the system are always maintained within a predetermined range.3)The designed adaptive consensus output-feedback quantization control scheme allows the hysteretic system to have unknown parameters and unknown disturbance,and ensures that the input signal transmitted between agents is the quantization value,and the introduced quantizer is implemented under the condition that only its sector bound property is required.The stability analysis has proved that all signals of the closed-loop are semi-globally uniformly bounded.The Star Sim hardware-in-the-loop simulation certificates the effectiveness of the proposed adaptive quantized control scheme.
基金National Natural Science Foundation of China(Nos.62171285,61971120 and 62327807)。
文摘A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.