In the present paper;two models of the input shaft for a Longitudinal Mounted four Speed Automotive Automatic Transmission for the first time were introduced to describe the input shaft critical loads. In the first mo...In the present paper;two models of the input shaft for a Longitudinal Mounted four Speed Automotive Automatic Transmission for the first time were introduced to describe the input shaft critical loads. In the first model;the DC (Direct Clutch) connects two gears together. This gives no change in the set torque (the set output torque equal to the set input torque). In the second model;the ODB (Over Drive Brake) fixes one element of the planetary set. This is resulting, the gear set gives reduction ratio (the set output torque is not equal to the set input torque). So, the transmission input shaft is worked under two different working operating conditions of torque. Also, it is loaded by a two vertical loads which are coming from the turbine and planetary set loads respectively. They are shown that there are three critical combinations of forces (contact force, shear force, and normal force) applied on the input shaft. The critical forces can be possibility exist three types of cracks for the input shaft cross section they are: transverse (torsion stress), longitudinal (bending stress), and vertical (shear stress). The three cracks are studied in this article. The article considers three stress factors: shearing torsion stress, shear stress, and bending stress.展开更多
The alternating movement of comber nipper balance shaft causes comber vibration, which is considered as the primary limitation for its velocity. First, optimal angular acceleration coefficients of nipper balance shaft...The alternating movement of comber nipper balance shaft causes comber vibration, which is considered as the primary limitation for its velocity. First, optimal angular acceleration coefficients of nipper balance shaft were set in this study to acquire theoretical limiting angular velocity. Second,the transmission input model of the input shaft was developed by adopting a numerical approximation method and by considering the Bézier curve as the motion curve of the input shaft. Hence, the motion of nipper balance shaft was controlled. The optimum transmission driver curve of the input shaft was obtained by contrasting the analyses of the actual angular acceleration of nipper balance shaft for each optimal coefficient. Experimental tests validated the results. The nipper balance shaft of the comber reduced comber vibration because the shaft adopted the controllable unit of transmission input.Our research sheds light on the application of controlled mechanisms in textile machines and provides a theoretical basis for increasing the velocity and decreasing the vibration or noise of the comber.展开更多
文摘In the present paper;two models of the input shaft for a Longitudinal Mounted four Speed Automotive Automatic Transmission for the first time were introduced to describe the input shaft critical loads. In the first model;the DC (Direct Clutch) connects two gears together. This gives no change in the set torque (the set output torque equal to the set input torque). In the second model;the ODB (Over Drive Brake) fixes one element of the planetary set. This is resulting, the gear set gives reduction ratio (the set output torque is not equal to the set input torque). So, the transmission input shaft is worked under two different working operating conditions of torque. Also, it is loaded by a two vertical loads which are coming from the turbine and planetary set loads respectively. They are shown that there are three critical combinations of forces (contact force, shear force, and normal force) applied on the input shaft. The critical forces can be possibility exist three types of cracks for the input shaft cross section they are: transverse (torsion stress), longitudinal (bending stress), and vertical (shear stress). The three cracks are studied in this article. The article considers three stress factors: shearing torsion stress, shear stress, and bending stress.
基金National Basic Research Program of China(973 Program)(No.2010CB334711)Textile Vision Science&Education Fund,China(No.2012)National Natural Science Foundation of China(No.51205288)
文摘The alternating movement of comber nipper balance shaft causes comber vibration, which is considered as the primary limitation for its velocity. First, optimal angular acceleration coefficients of nipper balance shaft were set in this study to acquire theoretical limiting angular velocity. Second,the transmission input model of the input shaft was developed by adopting a numerical approximation method and by considering the Bézier curve as the motion curve of the input shaft. Hence, the motion of nipper balance shaft was controlled. The optimum transmission driver curve of the input shaft was obtained by contrasting the analyses of the actual angular acceleration of nipper balance shaft for each optimal coefficient. Experimental tests validated the results. The nipper balance shaft of the comber reduced comber vibration because the shaft adopted the controllable unit of transmission input.Our research sheds light on the application of controlled mechanisms in textile machines and provides a theoretical basis for increasing the velocity and decreasing the vibration or noise of the comber.