In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Elect...In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Electromagnetic Radiation Structures(ERS)is composed of multiple radiating elements.These MIMO antennas are designed and analyzed with and without DGS.The feeding is introduced by a microstrip-fed line to significantly moderate the radiating structure’s overall size,which is 60×40×1 mm.The high directivity and divergence characteristics are attained by introducing the microstripfed lines perpendicular to each other.And the projected MIMO antenna structures are compared with others by using parameters like Return Loss(RL),Voltage Standing Wave Ratio(VSWR),Radiation Pattern(RP),radiation efficiency,and directivity.The same MIMO set-up is redesigned with DGS,and the resultant parameters are compared.Finally,the Multiple Input and Multiple Output Radiating Structures with and without DGS are compared for result considerations like RL,VSWR,RP,radiation efficiency,and directivity.This projected antenna displays an omnidirectional RP with moderate gain,which is highly recommended for human healthcare applications.By introducing the defected ground structure in bottom layer the lower cut-off frequencies of 2.3,4.5 and 6.0 GHz are achieved with few biological effects on radio propagation in human body communications.The proposed design covers numerous well-known wireless standards,along with dual-function DGS slots,and it can be easily integrated into Wireless Body Area Networks(WBAN)in medical applications.This WBAN links the autonomous nodes that may be situated either in the clothes,on-body or beneath the skin of a person.This system typically advances the complete human body and the inter-connected nodes through a wireless communication channel.展开更多
This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the b...This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes com- pressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to ac- curately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms.展开更多
In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and no...In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.展开更多
Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works abo...Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works about TR multiple-input multiple-output(MIMO) communication all focus on the system implementation and network building. The aim of this work is to analyze the influence of antenna coupling on the capacity of wideband TR MIMO system, which is a realistic question in designing a practical communication system. It turns out that antenna coupling stabilizes the capacity in a small variation range with statistical wideband channel response. Meanwhile, antenna coupling only causes a slight detriment to the channel capacity in a wideband TR MIMO system. Comparatively, uncorrelated stochastic channels without coupling exhibit a wider range of random capacity distribution which greatly depends on the statistical channel. The conclusions drawn from information difference entropy theory provide a guideline for designing better high-performance wideband TR MIMO communication systems.展开更多
Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes tech...Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes technical challenges in the design and development of communication systems. Due to the high path loss in THz band,wireless THz communication can be used for relatively short distances. Even,for a distance of few meters( > 5 m),the absorption coefficient is very high and hence the performance of the system is poor. The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last two decades.Multiple Input Multiple Output( MIMO) Spatial diversity technique has been exploited in this paper to improve the performance in terahertz band. The results show that the Bit Error Rate( BER) is considerably improved for short distance( < 5 m) with MIMO. However,as the distance increases,the improvement in the error performance is not significant even with increase in the order of diversity. This is because,as distance increases,in some frequency bands the signal gets absorbed by water vapor and results in poor transmission. Adaptive modulation scheme is implemented to avoid these error prone frequencies. Adaptive modulation with receiver diversity is proposed in this work and has improved the BER performance of the channel for distance greater than 5 m.展开更多
In order to investigate the impact of channel model parameters on the channel capacity of a multipleinput multiple-output (MIMO) system, a novel method is proposed to explore the channel capacity under Rayleigh fiat...In order to investigate the impact of channel model parameters on the channel capacity of a multipleinput multiple-output (MIMO) system, a novel method is proposed to explore the channel capacity under Rayleigh fiat fading with correlated transmit and receive antennas. The optimal transmitting direction which can achieve maximum channel capacity is derived using random matrices theory. In addition, the closed-form expression for the channel capacity of MIMO systems is given by utilizing the properties of Wishart distribution when SNR is high. Computer simulation results show that the channel capacity is maximized when the antenna spacing increases to a certain point, and furthermore, the larger the scattering angle is, the more quickly the channel capacity converges to its maximum. At high SNR (〉12 dB), the estimation of capacity is close to its true wlue. And, when the same array configuration is adopted both at the transmitter and the receiver, the UCA yields higher channel capacity than ULA.展开更多
In order to investigate the impact of channel estimation error on channel capacity of multiple input multiple output (MIMO) system, a novel method is proposed to explore the channel capacity in correlated Rayleigh fad...In order to investigate the impact of channel estimation error on channel capacity of multiple input multiple output (MIMO) system, a novel method is proposed to explore the channel capacity in correlated Rayleigh fading environment. A system model is constructed based on the channel estimation error at receiver side. Using the properties of Wishart distribution, the lower bound of the channel capacity is derived when the MIMO channel is of full rank. Then a method is proposed to select the optimum set of transmit antennas based on the lower bound of the mean channel capacity. The novel method can be easily implemented with low computational complexity. The simulation results show that the channel capacity of MIMO system is sensitive to channel estimation error, and is maximized when the signal-to-noise ratio increases to a certain point. Proper selection of transmit antennas can increase the channel capacity of MIMO system by about 1 bit/s in a flat fading environment with deficient rank of channel matrix.展开更多
The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced pr...The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced procedure of Multiple-Input Multiple-Output, which improves the performance of Wireless Local Area Networks. Moreover, Multi-user Multiple-Input Multiple-Output leads the Wireless Local Area Networks toward covering more areas. Due to the growth of the number of clients and requirements, researchers try to improve the performance of the Medium Access Control protocol of Multi-user Multiple-Input Multiple-Output technology to serve the user better, by supporting different data sizes, and reducing the waiting time to be able to transmit data quickly. In this paper, we propose a Clustering Multi-user Multiple-Input Multiple-Output protocol, which is an improved Medium Access Control protocol for Multi-user Multiple-Input Multiple-Out-put based on MIMOMate clustering technique and Padovan Backoff Algorithm. Utilizing MIMOMMate focuses on the signal power which only serves the user in that cluster, minimizes the energy consumption and increases the capacity. The implementation of Clustering Multi-user Multiple-Input Multiple-Output performs on the Network Simulator (NS2.34) platform. The results show that Clustering Multi-user Multiple-Input Multiple-Output protocol improves the throughput by 89.8%, and reduces the latency of wireless communication by 43.9% in scenarios with contention. As a result, the overall performances of the network are improved.展开更多
The development of any analytical method should have to experience at least four stages: its initial status, growth, mature and declining. However, although the regional input-output analysis has been widely applied f...The development of any analytical method should have to experience at least four stages: its initial status, growth, mature and declining. However, although the regional input-output analysis has been widely applied for more than forty years, it is still one of the most important approach in regional economic analysis and forecast at present in the world. This is due to the never ended modifications and its great potentials. In this paper, we review the historical development of the regional input-output analysis.展开更多
Agricultural input and output status in southern Xinjiang,China is introduced,such as lack of agricultural input,low level of agricultural modernization,excessive fertilizer use,serious damage of environment,shortage ...Agricultural input and output status in southern Xinjiang,China is introduced,such as lack of agricultural input,low level of agricultural modernization,excessive fertilizer use,serious damage of environment,shortage of water resources,tremendous pressure on ecological balance,insignificant economic and social benefits of agricultural production in southern Xinjiang,agriculture remaining a weak industry,agricultural economy as the economic subject of southern Xinjiang,and backward economic development of southern Xinjiang.Taking the Aksu area as an example,according to the input and output data in the years 2002-2007,input-output model about regional agriculture of the southern Xinjiang is established by principal component analysis.DPS software is used in the process of solving the model.Then,Eviews software is adopted to revise and test the model in order to analyze and evaluate the economic significance of the results obtained,and to make additional explanations of the relevant model.Since the agricultural economic output is seriously restricted in southern Xinjiang at present,the following countermeasures are put forward,such as adjusting the structure of agricultural land,improving the utilization ratio of land,increasing agricultural input,realizing agricultural modernization,rationally utilizing water resources,maintaining eco-environmental balance,enhancing the awareness of agricultural insurance,minimizing the risk and loss,taking the road of industrialization of characteristic agricultural products,and realizing the transfer of surplus labor force.展开更多
This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. ...This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. How the number of subcarriers in- fluences the estimation accuracy is illustrated by considering the joint Cramer-Rao bound and the mean square error of the maxi- mum likelihood estimate. The non-coherent MIMO radar ambiguity function with multiple subcarriers is developed and investigated by changing the number of subcarriers, the pulse width and the frequency spacing between adjacent subcarriers. The numerical results show that more subcarriers mean more accurate estimates, higher localization resolution, and larger pulse width results in a worse performance of target location estimation, while the fre- quency spacing affects target location estimation little.展开更多
Non-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cel-lular communication networks. In this paper, we first discuss a simple NOMA model with t...Non-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cel-lular communication networks. In this paper, we first discuss a simple NOMA model with two users served by a single-carrier si-multaneously to illustrate its basic principles. Then, a more general model with multicarrier serving an arbitrary number of users on each subcarrier is also discussed. An overview of existing works on performance analysis, resource allocation, and multiple-in-put multiple-output NOMA are summarized and discussed. Furthermore, we discuss the key features of NOMA and its potential re-search challenges.展开更多
An improved list sphere decoder (ILSD) is proposed based on the conventional list sphere decoder (LSD) and the reduced- complexity maximum likelihood sphere-decoding algorithm. Unlike the conventional LSD with fix...An improved list sphere decoder (ILSD) is proposed based on the conventional list sphere decoder (LSD) and the reduced- complexity maximum likelihood sphere-decoding algorithm. Unlike the conventional LSD with fixed initial radius, the ILSD adopts an adaptive radius to accelerate the list cdnstruction. Characterized by low-complexity and radius-insensitivity, the proposed algorithm makes iterative joint detection and decoding more realizable in multiple-antenna systems. Simulation results show that computational savings of ILSD over LSD are more apparent with more transmit antennas or larger constellations, and with no performance degradation. Because the complexity of the ILSD algorithm almost keeps invariant with the increasing of initial radius, the BER performance can be improved by selecting a sufficiently large radius.展开更多
The Transmit BeamForming (TBF) technology, applied in a multiple-transmit radar system, is studied in this paper, where multiple elements of antenna array transmit binary Zero Correlation Zones Orthogonal Signals (ZCZ...The Transmit BeamForming (TBF) technology, applied in a multiple-transmit radar system, is studied in this paper, where multiple elements of antenna array transmit binary Zero Correlation Zones Orthogonal Signals (ZCZ-OS) independently. For each Direction Of Arrival (DOA) with respect to the transmitting array, the analysis on the gain and sidelobe level of TBF output is presented. This paper focuses on the range sidelobes performance within the main beam (in angle domain). For the normal direction, due to the inherent phase property of ZCZ-OS, the TBF output has part zero sidelobes area, of which the distribution is discussed. For the other directions, a systematic search algorithm to optimize the transmission order of signals is proposed for an optimal relationship chart of DOA and transmission order. The range sidelobe performance within the main beam can be improved as the optimal transmission order is adopted.展开更多
Quadrature Spatial Modulation (QSM) is a high spectral efficiency Multiple-Input Multiple Output (MIMO) technique used to improve the spectral efficiency of wireless communication systems. The main concept of QSM is t...Quadrature Spatial Modulation (QSM) is a high spectral efficiency Multiple-Input Multiple Output (MIMO) technique used to improve the spectral efficiency of wireless communication systems. The main concept of QSM is to extend the spatial constellation of the conventional Spatial Modulation (SM) in both the in-phase and quadrature components of the data symbol. In this paper, because QSM-based on Interleaxdng Division Multiplexing (IDM) has not been introduced in the literature as a multiple antenna system, we introduced a novel scheme, called QSM system based on Interleaving Division Multiplexing (QSM-IDM). The antenna sets are also applied to a spreader, before being used to assign an antenna number for information transmission. Analysis and simulations for a flat fading channel show that the proposed QSM-IDM method significantly outperforms the original QSM system with the same data rate, while maintaining a relatively acceptable complexity. The obtained simulation results show that the conducted analysis yields significant improvements for the accuracy of the proposed scheme, with satisfactory complexity.展开更多
Multiple-input multiple-output (MIMO) wireless communication systems can significantly improve the spectrum efficiency or transmission reliability through spatial multiplexing or diversity respectively.Most of previou...Multiple-input multiple-output (MIMO) wireless communication systems can significantly improve the spectrum efficiency or transmission reliability through spatial multiplexing or diversity respectively.Most of previous works mainly have focused on the multiplexing-diversity tradeoff or switching between multiplexing and diversity without considering the property of heterogeneous QoS provisioning.In this paper,switching between multiplexing and diversity in MIMO system with the heterogeneous QoS provisioning is studied.Firstly the QoS provisioning for users are classified into two classes:users with real time service requirement and users with non-real time service requirement respectively.Then based on the heterogeneous QoS Provisioning for users,two different switching criterions are proposed,switching based on the Euclidean distance for users with real time service to minimize the probability of symbol error and capacity-based switching criterion for users with non-real time service to maximize the transmission capacity respectively.Finally,numerical simulation results are illustrated to demonstrate the performance of proposed scheme.展开更多
文摘In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Electromagnetic Radiation Structures(ERS)is composed of multiple radiating elements.These MIMO antennas are designed and analyzed with and without DGS.The feeding is introduced by a microstrip-fed line to significantly moderate the radiating structure’s overall size,which is 60×40×1 mm.The high directivity and divergence characteristics are attained by introducing the microstripfed lines perpendicular to each other.And the projected MIMO antenna structures are compared with others by using parameters like Return Loss(RL),Voltage Standing Wave Ratio(VSWR),Radiation Pattern(RP),radiation efficiency,and directivity.The same MIMO set-up is redesigned with DGS,and the resultant parameters are compared.Finally,the Multiple Input and Multiple Output Radiating Structures with and without DGS are compared for result considerations like RL,VSWR,RP,radiation efficiency,and directivity.This projected antenna displays an omnidirectional RP with moderate gain,which is highly recommended for human healthcare applications.By introducing the defected ground structure in bottom layer the lower cut-off frequencies of 2.3,4.5 and 6.0 GHz are achieved with few biological effects on radio propagation in human body communications.The proposed design covers numerous well-known wireless standards,along with dual-function DGS slots,and it can be easily integrated into Wireless Body Area Networks(WBAN)in medical applications.This WBAN links the autonomous nodes that may be situated either in the clothes,on-body or beneath the skin of a person.This system typically advances the complete human body and the inter-connected nodes through a wireless communication channel.
基金supported by the National Natural Science Foundation of China(Grant Nos.61071163,61271327,and 61471191)the Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics,China(Grant No.BCXJ14-08)+2 种基金the Funding of Innovation Program for Graduate Education of Jiangsu Province,China(Grant No.KYLX 0277)the Fundamental Research Funds for the Central Universities,China(Grant No.3082015NP2015504)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PADA),China
文摘This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes com- pressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to ac- curately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms.
文摘In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61331007,61361166008,and 61401065)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120185130001)
文摘Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works about TR multiple-input multiple-output(MIMO) communication all focus on the system implementation and network building. The aim of this work is to analyze the influence of antenna coupling on the capacity of wideband TR MIMO system, which is a realistic question in designing a practical communication system. It turns out that antenna coupling stabilizes the capacity in a small variation range with statistical wideband channel response. Meanwhile, antenna coupling only causes a slight detriment to the channel capacity in a wideband TR MIMO system. Comparatively, uncorrelated stochastic channels without coupling exhibit a wider range of random capacity distribution which greatly depends on the statistical channel. The conclusions drawn from information difference entropy theory provide a guideline for designing better high-performance wideband TR MIMO communication systems.
文摘Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes technical challenges in the design and development of communication systems. Due to the high path loss in THz band,wireless THz communication can be used for relatively short distances. Even,for a distance of few meters( > 5 m),the absorption coefficient is very high and hence the performance of the system is poor. The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last two decades.Multiple Input Multiple Output( MIMO) Spatial diversity technique has been exploited in this paper to improve the performance in terahertz band. The results show that the Bit Error Rate( BER) is considerably improved for short distance( < 5 m) with MIMO. However,as the distance increases,the improvement in the error performance is not significant even with increase in the order of diversity. This is because,as distance increases,in some frequency bands the signal gets absorbed by water vapor and results in poor transmission. Adaptive modulation scheme is implemented to avoid these error prone frequencies. Adaptive modulation with receiver diversity is proposed in this work and has improved the BER performance of the channel for distance greater than 5 m.
基金the National Natural Science Foundation of China (60372055) and the National DoctoralFoundation of China (2003698027).
文摘In order to investigate the impact of channel model parameters on the channel capacity of a multipleinput multiple-output (MIMO) system, a novel method is proposed to explore the channel capacity under Rayleigh fiat fading with correlated transmit and receive antennas. The optimal transmitting direction which can achieve maximum channel capacity is derived using random matrices theory. In addition, the closed-form expression for the channel capacity of MIMO systems is given by utilizing the properties of Wishart distribution when SNR is high. Computer simulation results show that the channel capacity is maximized when the antenna spacing increases to a certain point, and furthermore, the larger the scattering angle is, the more quickly the channel capacity converges to its maximum. At high SNR (〉12 dB), the estimation of capacity is close to its true wlue. And, when the same array configuration is adopted both at the transmitter and the receiver, the UCA yields higher channel capacity than ULA.
基金this work was supported by the National Natural Science Foundation (No60372055)the National High Technology Re-search and Development (863) Project ( No2003AA123320)the National Doctoral Research Foundation of Ministry of Education(No20020698024)
文摘In order to investigate the impact of channel estimation error on channel capacity of multiple input multiple output (MIMO) system, a novel method is proposed to explore the channel capacity in correlated Rayleigh fading environment. A system model is constructed based on the channel estimation error at receiver side. Using the properties of Wishart distribution, the lower bound of the channel capacity is derived when the MIMO channel is of full rank. Then a method is proposed to select the optimum set of transmit antennas based on the lower bound of the mean channel capacity. The novel method can be easily implemented with low computational complexity. The simulation results show that the channel capacity of MIMO system is sensitive to channel estimation error, and is maximized when the signal-to-noise ratio increases to a certain point. Proper selection of transmit antennas can increase the channel capacity of MIMO system by about 1 bit/s in a flat fading environment with deficient rank of channel matrix.
文摘The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced procedure of Multiple-Input Multiple-Output, which improves the performance of Wireless Local Area Networks. Moreover, Multi-user Multiple-Input Multiple-Output leads the Wireless Local Area Networks toward covering more areas. Due to the growth of the number of clients and requirements, researchers try to improve the performance of the Medium Access Control protocol of Multi-user Multiple-Input Multiple-Output technology to serve the user better, by supporting different data sizes, and reducing the waiting time to be able to transmit data quickly. In this paper, we propose a Clustering Multi-user Multiple-Input Multiple-Output protocol, which is an improved Medium Access Control protocol for Multi-user Multiple-Input Multiple-Out-put based on MIMOMate clustering technique and Padovan Backoff Algorithm. Utilizing MIMOMMate focuses on the signal power which only serves the user in that cluster, minimizes the energy consumption and increases the capacity. The implementation of Clustering Multi-user Multiple-Input Multiple-Output performs on the Network Simulator (NS2.34) platform. The results show that Clustering Multi-user Multiple-Input Multiple-Output protocol improves the throughput by 89.8%, and reduces the latency of wireless communication by 43.9% in scenarios with contention. As a result, the overall performances of the network are improved.
文摘The development of any analytical method should have to experience at least four stages: its initial status, growth, mature and declining. However, although the regional input-output analysis has been widely applied for more than forty years, it is still one of the most important approach in regional economic analysis and forecast at present in the world. This is due to the never ended modifications and its great potentials. In this paper, we review the historical development of the regional input-output analysis.
基金Supported by the Key Research Subject of Economic Census of Xinjiang Production and Construction Corps(201004)the President Fund for Natural Science Project of Tarim University(TDZKSS09010)+1 种基金the Quality Project of Tarim University(TDZGKC09085)the Quality Project of Tarim University(TDZGTD09004)
文摘Agricultural input and output status in southern Xinjiang,China is introduced,such as lack of agricultural input,low level of agricultural modernization,excessive fertilizer use,serious damage of environment,shortage of water resources,tremendous pressure on ecological balance,insignificant economic and social benefits of agricultural production in southern Xinjiang,agriculture remaining a weak industry,agricultural economy as the economic subject of southern Xinjiang,and backward economic development of southern Xinjiang.Taking the Aksu area as an example,according to the input and output data in the years 2002-2007,input-output model about regional agriculture of the southern Xinjiang is established by principal component analysis.DPS software is used in the process of solving the model.Then,Eviews software is adopted to revise and test the model in order to analyze and evaluate the economic significance of the results obtained,and to make additional explanations of the relevant model.Since the agricultural economic output is seriously restricted in southern Xinjiang at present,the following countermeasures are put forward,such as adjusting the structure of agricultural land,improving the utilization ratio of land,increasing agricultural input,realizing agricultural modernization,rationally utilizing water resources,maintaining eco-environmental balance,enhancing the awareness of agricultural insurance,minimizing the risk and loss,taking the road of industrialization of characteristic agricultural products,and realizing the transfer of surplus labor force.
基金supported by the National Natural Science Foundation of China (60972152 61001153)the Aeronautics Science Foundation of China (2009ZC53031)
文摘This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. How the number of subcarriers in- fluences the estimation accuracy is illustrated by considering the joint Cramer-Rao bound and the mean square error of the maxi- mum likelihood estimate. The non-coherent MIMO radar ambiguity function with multiple subcarriers is developed and investigated by changing the number of subcarriers, the pulse width and the frequency spacing between adjacent subcarriers. The numerical results show that more subcarriers mean more accurate estimates, higher localization resolution, and larger pulse width results in a worse performance of target location estimation, while the fre- quency spacing affects target location estimation little.
文摘Non-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cel-lular communication networks. In this paper, we first discuss a simple NOMA model with two users served by a single-carrier si-multaneously to illustrate its basic principles. Then, a more general model with multicarrier serving an arbitrary number of users on each subcarrier is also discussed. An overview of existing works on performance analysis, resource allocation, and multiple-in-put multiple-output NOMA are summarized and discussed. Furthermore, we discuss the key features of NOMA and its potential re-search challenges.
基金The National Natural Science Founda-tion of China ( No 60496316)the National Hi-Tech Re-search and Development Program (863) of China (No2006-AA01Z270)
文摘An improved list sphere decoder (ILSD) is proposed based on the conventional list sphere decoder (LSD) and the reduced- complexity maximum likelihood sphere-decoding algorithm. Unlike the conventional LSD with fixed initial radius, the ILSD adopts an adaptive radius to accelerate the list cdnstruction. Characterized by low-complexity and radius-insensitivity, the proposed algorithm makes iterative joint detection and decoding more realizable in multiple-antenna systems. Simulation results show that computational savings of ILSD over LSD are more apparent with more transmit antennas or larger constellations, and with no performance degradation. Because the complexity of the ILSD algorithm almost keeps invariant with the increasing of initial radius, the BER performance can be improved by selecting a sufficiently large radius.
基金Supported by the Major State Basic Research Development Program of China(973Program)(No.2011CB-707001,2010CB731903)Changjiang Scholars and Innovative Research Team in University(IRT0954)the National Natural Science Foundation of China(No.60971108,60825104)
文摘The Transmit BeamForming (TBF) technology, applied in a multiple-transmit radar system, is studied in this paper, where multiple elements of antenna array transmit binary Zero Correlation Zones Orthogonal Signals (ZCZ-OS) independently. For each Direction Of Arrival (DOA) with respect to the transmitting array, the analysis on the gain and sidelobe level of TBF output is presented. This paper focuses on the range sidelobes performance within the main beam (in angle domain). For the normal direction, due to the inherent phase property of ZCZ-OS, the TBF output has part zero sidelobes area, of which the distribution is discussed. For the other directions, a systematic search algorithm to optimize the transmission order of signals is proposed for an optimal relationship chart of DOA and transmission order. The range sidelobe performance within the main beam can be improved as the optimal transmission order is adopted.
文摘Quadrature Spatial Modulation (QSM) is a high spectral efficiency Multiple-Input Multiple Output (MIMO) technique used to improve the spectral efficiency of wireless communication systems. The main concept of QSM is to extend the spatial constellation of the conventional Spatial Modulation (SM) in both the in-phase and quadrature components of the data symbol. In this paper, because QSM-based on Interleaxdng Division Multiplexing (IDM) has not been introduced in the literature as a multiple antenna system, we introduced a novel scheme, called QSM system based on Interleaving Division Multiplexing (QSM-IDM). The antenna sets are also applied to a spreader, before being used to assign an antenna number for information transmission. Analysis and simulations for a flat fading channel show that the proposed QSM-IDM method significantly outperforms the original QSM system with the same data rate, while maintaining a relatively acceptable complexity. The obtained simulation results show that the conducted analysis yields significant improvements for the accuracy of the proposed scheme, with satisfactory complexity.
基金Sponsored by the Major Projects of National Science and Technology(Grant No.2009ZX03003-003-01)the National Science Fund Young Scholars(Grant No.61001115)the Natural Science Foundation of Beijing,China(Grant No.4102044)
文摘Multiple-input multiple-output (MIMO) wireless communication systems can significantly improve the spectrum efficiency or transmission reliability through spatial multiplexing or diversity respectively.Most of previous works mainly have focused on the multiplexing-diversity tradeoff or switching between multiplexing and diversity without considering the property of heterogeneous QoS provisioning.In this paper,switching between multiplexing and diversity in MIMO system with the heterogeneous QoS provisioning is studied.Firstly the QoS provisioning for users are classified into two classes:users with real time service requirement and users with non-real time service requirement respectively.Then based on the heterogeneous QoS Provisioning for users,two different switching criterions are proposed,switching based on the Euclidean distance for users with real time service to minimize the probability of symbol error and capacity-based switching criterion for users with non-real time service to maximize the transmission capacity respectively.Finally,numerical simulation results are illustrated to demonstrate the performance of proposed scheme.