Improving plant resistance to Verticillium wilt(VW),which causes massive losses in Gossypium hirsutum,is a global challenge.Crop plants need to efficiently allocate their limited energy resources to maintain a balance...Improving plant resistance to Verticillium wilt(VW),which causes massive losses in Gossypium hirsutum,is a global challenge.Crop plants need to efficiently allocate their limited energy resources to maintain a balance between growth and defense.However,few transcriptional regulators specifically respond to Verticillium dahliae and the underlying mechanism has not been identified in cotton.In this study,we found that the that expression of most R2R3-MYB members in cotton is significantly changed by V.dahliae infection relative to the other MYB types.One novel R2R3-MYB transcription factor(TF)that specifically responds to V.dahliae,GhMYB3D5,was identified.GhMYB3D5 was not expressed in 15 cotton tissues under normal conditions,but it was dramatically induced by V.dahliae stress.We functionally characterized its positive role and underlying mechanism in VW resistance.Upon V.dahliae infection,the up-regulated GhMYB3D5 bound to the GhADH1 promoter and activated GhADH1expression.In addition,GhMYB3D5 physically interacted with GhADH1 and further enhanced the transcriptional activation of GhADH1.Consequently,the transcriptional regulatory module GhMYB3D5-GhADH1 then promoted lignin accumulation by improving the transcriptional levels of genes related to lignin biosynthesis(GhPAL,GhC4H,Gh4CL,and GhPOD/GhLAC)in cotton,thereby enhancing cotton VW resistance.Our results demonstrated that the GhMYB3D5 promotes defense-induced lignin accumulation,which can be regarded as an effective way to orchestrate plant immunity and growth.展开更多
A plant expression vector containing a chimeric Bt29K gene coding for the activated Cry1Ac protein and the arrowhead proteinase inhibitior gene API B were introduced into the cotton cultivar Jihe321 mediated ...A plant expression vector containing a chimeric Bt29K gene coding for the activated Cry1Ac protein and the arrowhead proteinase inhibitior gene API B were introduced into the cotton cultivar Jihe321 mediated by Agrobactertium tumefaciens. Based on the results of kanamycin resistant testing, PCR detection for both foreign genes and insect bioassay using Heliethis armigera , nine transgenic homozygous cotton lines with insect resistance of more than 90% and better agronomic traits were bred through six generations from the original transgenic plants. Results from insect bioassay and sequence analysis of the PCR products of plants from some homozygous lines indicated that the chimeric Bt29K gene was stably inherited in these transgenic cotton lines. The main agronomic characters of these homozygous cotton lines, such as boll productivity and fibre strength, were better than that of the original cotton cv. Jihe321.展开更多
We compared the ground-dwelling beetle assemblages under four scenarios in which transgenic Bt(Cry 1Ac) cotton(33B),transgenic Bt(Cry 1Ac)+CpTI cotton(SGK321),conventional cotton(33),conventional cotton(Sh...We compared the ground-dwelling beetle assemblages under four scenarios in which transgenic Bt(Cry 1Ac) cotton(33B),transgenic Bt(Cry 1Ac)+CpTI cotton(SGK321),conventional cotton(33),conventional cotton(Shiyuan 321) in North China.During the survey in two years(2009-2010),24 ground beetle species were captured with pitfall traps in 20 plots which included five replicates for each cotton type.No significant difference was observed in the number of ground beetle species captured,activity density,evenness and Shannon-Wiener diversity among the four cotton varieties.Chlaenius posticalis was less abundant in transgenic Bt+CpTI cotton(SGK321) fields than its conventional cotton(Shiyuan 321),but more abundant in transgenic Bt cotton(33B) fields compared with its conventional cotton(33).There was no significant difference for other abundant species between in transgenic cotton and in conventional cotton fields.Based on non-metric multidimensional scaling(NMDS) analysis,ground-dwelling beetle assemblages were similar in transgenic and conventional cotton over the two years,but the ground-dwelling beetle assemblages in transgenic cotton 33 B significantly differed from that in the conventional cotton(strain 33) in 2010.No strong evidence that the transgenic cotton effect on ground-dwelling beetle assemblages was found in this study.展开更多
[Objective] The aim of the research was to analyze the resistance of binary insect-resistant transgenic soybean to Heliothis viriplaca.[Method]In this experiment, resistance analysis of the stabilized binary insect-re...[Objective] The aim of the research was to analyze the resistance of binary insect-resistant transgenic soybean to Heliothis viriplaca.[Method]In this experiment, resistance analysis of the stabilized binary insect-resistant transgenic soybean to Heliothis viriplaca was conducted in lab and in field conditions.[Result] The results indicated that the leaves of insect-resistant transgenic soybeans T5-150 and T5-195 showed lighter damage than those of non-transgenic soybeans. Meanwhile, the Heliothis viriplaca larvae fed on leaves of these two transgenic soybeans were characterized by less leaf consumption, shortening survival day, slower development and less pupation.[Conclusion]It was concluded that insect-resistance of transgenic soybean to Heliothis viriplaca was increased dramatically and the research provided a reference for selecting binary insect-resistant transgenic soybean to Heliothis viriplaca.展开更多
[Objective] The aim was to learn the resistance of different tissues and organs of transgenic cotton to Spodoptera exigua (Hbner). [Method] Flowers,the 1st,the 3rd,the 6th and the 14th leaves from the top of 33B,GK1...[Objective] The aim was to learn the resistance of different tissues and organs of transgenic cotton to Spodoptera exigua (Hbner). [Method] Flowers,the 1st,the 3rd,the 6th and the 14th leaves from the top of 33B,GK12 and SGK321 were used to feed S. exigua neonates respectively. Survival larvae and dead ones were counted on the 3rd,the 7th,the 10th,the 16th and the 19th day; meanwhile,the pupae amount was recorded,and the pupae weight was measured at the 24th h after pupation. [Result] The survival curves,pupation rates and pupae weights of S. exigua feeding on different tissues of transgenic cotton were not significantly different from those of S. exigua feeding on the corresponding tissues of conventional cotton; pupation rate of S. exigua feeding on different leaves of the same cotton variety were not significantly different from each other,but all higher than that of S. exigua feeding on the flowers of that cotton; and there were no differences among pupation weights of S. exigua feeding on different leaves or flowers of the same cotton variety. [Conclusion] Transgenic cotton showed weak resistance to S. exigua. Hence,in the transgenic cotton fields,more attention should be paid to occurrence trend of S. exigua and its control.展开更多
Partially modified Bt Cry1Ac gene and the arrowhead proteinase inhibitor (API) gene were used to construct a plant transformation vector pBtiA and this construct was transferred into the genome of the hybrid popla...Partially modified Bt Cry1Ac gene and the arrowhead proteinase inhibitor (API) gene were used to construct a plant transformation vector pBtiA and this construct was transferred into the genome of the hybrid poplar 741 [ Populus alba L.×( P. davidiana Dode+ P. simonii Carr.)× P. tomentosa Carr.] by Agrobacterium _ mediated transformation. Ten kanamycin resistant plants have been regenerated. Upon insect bioassay using Clostera anachoreta (Fabricius), three of the examined plants were demonstrated to be highly resistant to the testing insects. The mortality of insect larvae on one plant was higher than 90% in 6 days after infestation and the growth of the survival larvae were seriously inhibited. Results of PCR and Southern blot analysis indicated that both Bt Cry1Ac gene and API gene were integrated as a single copy into the genomes of these three plants when Cry1Ac gene fragment was used as the probe. Protein dot blot immunoassay and ELISA analysis revealed that at least the Cry1Ac protein was produced in these three transgenic plants and the expression levels were estimated to be approximately 0.015% of the leaf total soluble protein. This is the first report on insect resistant transgenic hybrid poplar 741 that expresses two insecticidal protein genes.展开更多
PCR detection,quantitative real-time PCR(q-RTPCR),outdoor insect resistance,and disease resistance identification were carried out for the detection of genetic stability and disease resistance through generations(T2,T...PCR detection,quantitative real-time PCR(q-RTPCR),outdoor insect resistance,and disease resistance identification were carried out for the detection of genetic stability and disease resistance through generations(T2,T3,and T4)in transgenic maize germplasms(S3002 and 349)containing the bivalent genes(insect resistance gene Cry1Ab13-1 and disease resistance gene NPR1)and their corresponding wild type.Results indicated that the target genes Cry1Ab13-1 and NPR1 were successfully transferred into both germplasms through tested generations;q-PCR confirmed the expression of Cry1Ab13-1 and NPR1 genes in roots,stems,and leaves of tested maize plants.In addition,S3002 and 349 bivalent gene-transformed lines exhibited resistance to large leaf spots and corn borer in the field evaluation compared to the wild type.Our study confirmed that Cry1Ab13-1 and NPR1 bivalent genes enhanced the resistance against maize borer and large leaf spot disease and can stably inherit.These findings could be exploited for improving other cultivated maize varieties.展开更多
A plant expression vector carrying both pea lectin gene and Soybean trypsin inhibitor gene has been constructed and transferred into tobacco via Agrobacterium mediated transformation. Transgenic plants are further co...A plant expression vector carrying both pea lectin gene and Soybean trypsin inhibitor gene has been constructed and transferred into tobacco via Agrobacterium mediated transformation. Transgenic plants are further confirmed by ELISA, PCR and PCR Southern assays. Results of bioassays show that transgenic plants display notably inhibitory effects to larvae development and survival of Heliothis armigera Hubner.展开更多
Background:Sucking insect pests cause severe damage to cotton crop production.The development of insect resistant cotton cultivars is one of the most effective measures in curtailing the yield losses.Considering the r...Background:Sucking insect pests cause severe damage to cotton crop production.The development of insect resistant cotton cultivars is one of the most effective measures in curtailing the yield losses.Considering the role of morphological and biochemical host plant resista nee(HPR)traits in plant defense,12 cotton genotypes/varieties were evaluated for leaf area,leaf glanding,total soluble sugars,total soluble proteins,total phenolics,tannin and total flavonoids against fluctuating populations of whitefly,thrips and jassid under field conditions.Results:The population of these insects fluctuated during the growing seas on and remained above threshold level(whitefly>5,thrips>(8-10)f or jassid>1 per leaf)during late June and early July.Strong and negative association of whitefly(r=-0.825)and jassid(r=-0.929)with seed cotton yield was observed.Mean population of insects were the highest in Glandless-1 followed by NIA-82 and NIA-M30.NIAB-Kiran followed by NI AB-878 and Sadori were the most resistant,with the mean population of 1.41,1.60,1.66(whitefly);2.24,232,2.53(thrips)and 037,0.31,036(jassid),respectively.The resistant variety NIAB-Kiran showed less soluble sugars(8.54 mg.g^(-1)),soluble proteins(27.11 mg.g^(-1))and more phenolic(36.56 mg.g^(-1))and flavonoids(13.10mg.g^(-1))as compared with the susceptible check Glandless-1.Moreover,all insect populations were positively correlated with total soluble sugars and proteins.Whitefly populations exhibited negative response to leaf gossypol glands,total phenolics,tannins and flavonoids.The thrips and jassid populations had a significant and negative correlation with these four biochemical HPR traits.Conclusion:The ide ntified resistant resources and HPR traits can be deployed against sucking in sect pests'complex in future breeding programs of developing insect resistant cotton varieties.展开更多
Focusing on several commonly used insect resistance genes,we reviewed the advances in insect-resistant transgenic rice,and analyzed the problems and developing tendency in transgenic rice research in this paper.
EPSPS is a key gene in the shikimic acid synthesis pathway that has been widely used in breeding crops with herbicide resistance.However,its role in regulating cell elongation is poorly understood.Through the overexpr...EPSPS is a key gene in the shikimic acid synthesis pathway that has been widely used in breeding crops with herbicide resistance.However,its role in regulating cell elongation is poorly understood.Through the overexpression of EPSPS genes,we generated lines resistant to glyphosate that exhibit an unexpected dwarf phenotype.A representative line,DHR1,exhibits a stable dwarf phenotype throughout its entire growth period.Except for plant height,the other agronomic traits of DHR1 are similar to its transgenic explants ZM24.Paraffin section observations showed that DHR1 internodes are shortened due to reduced elongation and division of the internode cells.Exogenous hormones confirmed that DHR1 is not a classical brassinolide(BR)-or gibberellin(GA)-related dwarfing mutant.Hybridization analysis and fine mapping confirmed that the EPSPS gene is the causal gene for dwarfism,and the phenotype can be inherited in different genotypes.Transcriptome and metabolome analyses showed that genes associated with the phenylpropanoid synthesis pathway are enriched in DHR1 compared with ZM24.Flavonoid metabolites are enriched in DHR1,whereas lignin metabolites are reduced.The enhancement of flavonoids likely results in differential expression of auxin signal pathway genes and alters the auxin response,subsequently affecting cell elongation.This study provides a new strategy for generating dwarfs and will accelerate advancements in light simplification in the cultivation and mechanized harvesting of cotton.展开更多
Cotton Verticillium wilt is a serious soil-borne disease that leads to significant losses in fiber yield and quality worldwide. Currently, the most effective way to increase Verticillium wilt resistance is to develop ...Cotton Verticillium wilt is a serious soil-borne disease that leads to significant losses in fiber yield and quality worldwide. Currently, the most effective way to increase Verticillium wilt resistance is to develop new resistant cotton varieties. Lines 5026 and 60182 are two Verticillium wilt-resistant upland cotton accessions. We previously identified a total of 25 quantitative trait loci(QTLs) related to Verticillium wilt resistance from 5026 and 60182 by assembling segregating populations from hybridization with susceptible parents. In the current study, using 13 microsatellite markers flanking QTLs related to Verticillium wilt resistance, we developed 155 cotton inbred lines by pyramiding different QTLs related to Verticillium wilt resistance from a filial generation produced by crossing 5026 and 60182. By examining each allele's effect and performing multiple comparison analysis, we detected four elite QTLs/alleles(q-5/NAU905-2, q-6/NAU2754-2, q-8/NAU3053-1 and q-13/NAU6598-1) significant for Verticillium wilt resistance, pyramiding these elite alleles increased the disease resistance of inbred lines. Furthermore, we selected 34 elite inbred lines, including five lines simultaneously performing elite fiber quality, high yield and resistance to V. dahliae, 14 lines with elite fiber quality and disease resistance, three lines with high yield and disease resistance, and 12 lines with resistance to V. dahliae. No correlation between Verticillium wilt resistance and fiber quality traits/yield and its components was detected in the 155 developed inbred lines. Our results provide candidate markers for disease resistance for use in marker-assisted breeding(MAS), as well as elite germplasms for improving important agronomic traits via modern cotton breeding.展开更多
The introduction of Bacillus thuringiensis(Bt)cotton has reduced the burden of pests without harming the environment and human health.However,the efficacy of Bt cotton has decreased due to field-evolved resistance in ...The introduction of Bacillus thuringiensis(Bt)cotton has reduced the burden of pests without harming the environment and human health.However,the efficacy of Bt cotton has decreased due to field-evolved resistance in insect pests over time.In this review,we have discussed various factors that facilitate the evolution of resistance in cotton pests.Currently,different strategies like pyramided cotton expressing two or more distinct Bt toxin genes,refuge strategy,releasing of sterile insects,and gene silencing by RNAi are being used to control insect pests.Pyramided cotton has shown resistance against different cotton pests.The multiple genes pyramiding and silencing(MGPS)approach has been proposed for the management of cotton pests.The genome information of cotton pests is necessary for the development of MGPS-based cotton.The expression cassettes against various essential genes involved in defense,detoxification,digestion,and development of cotton pests will successfully obtain favorable agronomic characters for crop protection and production.The MGPS involves the construction of transformable artificial chromosomes,that can express multiple distinct Bt toxins and RNAi to knockdown various essential target genes to control pests.The evolution of resistance in cotton pests will be delayed or blocked by the synergistic action of high dose of Bt toxins and RNAi as well as compliance of refuge requirement.展开更多
In this paper,the wrinkle resistant finishing of cotton fabric with the complex system of PBTCA and CA was mainly discussed.The influence of finishing conditions such as the amount of finishing agent and catalyst,curi...In this paper,the wrinkle resistant finishing of cotton fabric with the complex system of PBTCA and CA was mainly discussed.The influence of finishing conditions such as the amount of finishing agent and catalyst,curing temperature and curing time were studied.Wrinkle recovery angle(WRA),breaking strength(BS) and whiteness(Wh) of finished fabric were measured.The experimental data indicated that the best finishing conditions were PBTCA 120g/L,CA 50g/L,sodium hypophosphite 50g/L,triethanolamine 20g/L,cured 170℃ for 120s.展开更多
To analyse the combining ability and heterosis between high-strength lines and transgenic Bt bollworm-resistant lines in upland cotton, 5 high-strength lines were crossed as female lines with 12 transgenic Bt bollworm...To analyse the combining ability and heterosis between high-strength lines and transgenic Bt bollworm-resistant lines in upland cotton, 5 high-strength lines were crossed as female lines with 12 transgenic Bt bollworm-resistant lines according to NCII design. It was demonstrated that the compositions of variance in various traits were quite different. For seed cotton yield, lint yield, boll numbers per plant and boll weight, the dominant (special combining ability) effects were the major effects, accounting for 87.38, 84. 40, 80. 04 and 64. 46% of the total phenotypic variances, respectively, while for fibre strength and micronaire value, the additive (general combining ability) effects had the major effects, with a ratio of additive variance to phenotypic variance of 78.85 and 43.80%. As for lint percent and 2.5% span length, the dominant and additive variances had similar effects, in phenotypic variances (54.94 and 40.11% for lint percent, 45.76 and 42.49% for 2. 5% span length, respectively). The mid-parent heterosis (Hpm), surpassing parent heterosis (Hpb) and competitive heterosis (Hck) for seed cotton yield and lint yield were both extremely significant. For fibre properties, the Hck and Hpm of 2.5 % fibre span length were extremely significant, the Hck of fibre strength was significant, and the favorable negative Hck of micronaire was also extremely significant. The increments of hybrid over common variety were 17% for lint yield and fibre strength, 7% for fibre span length, and 4 % for fineness.展开更多
The plasmid of pCDMARUBA-Hyg, which contained two insect-resistance genes, sbk (modified from CrylA(c)) and sck (modified from CpTI), was transformed into an Agrobacterium EHA105 for infection of the calli of a ...The plasmid of pCDMARUBA-Hyg, which contained two insect-resistance genes, sbk (modified from CrylA(c)) and sck (modified from CpTI), was transformed into an Agrobacterium EHA105 for infection of the calli of a super japonica rice Nanjing 45. Primarily, using polymerase chain reaction (PCR) detection with the primers of sbk and sck genes, 42 positive transgenic plants that were marker-free and contained the two target genes were selected from 97 regenerated plants. Results of southern-blotting indicated that 23, 11, 5, 2 and 1 plants had one, two, three, four and five copies of the transformed genes, respectively. Analysis of reverse transcription PCR (RT-PCR) and Bt gene testing paper showed that 28 T3 generation plants derived from four transgenic plants having a single copy were insect-resistant. Feeding experiment with rice stem borer revealed that the insect resistance was greatly increased with the larva mortality ranging from 94% to 100%. In addition, among the transgenic plants, three T3 transgenic plants possessed some desirable characteristics for breeding and production, such as plant height, seed-setting rate, 1000-grain weight and larva mortality. The mechanism of insect resistance of Bt .qene and its application in rice transgenic research were also briefly discussed.展开更多
In order to improve insect-resistance of cottonand cultivate new cotton varieties,tissue cultureand plant regeneration of cotton(Gossypiumhirsutum L.)were studied with Xinluzao 4,Xi550,Jizi 492,Hengwu 89-30,Han 93-2 a...In order to improve insect-resistance of cottonand cultivate new cotton varieties,tissue cultureand plant regeneration of cotton(Gossypiumhirsutum L.)were studied with Xinluzao 4,Xi550,Jizi 492,Hengwu 89-30,Han 93-2 and Jizi123.A system of cotton tissue culture for展开更多
The strain of fenvalerate-resistant cotton aphids was selected using fenvalerate insecticide in the laboratory, the resistance factor of the strain was 199.54. Three degenerate primers were designed and used to perfor...The strain of fenvalerate-resistant cotton aphids was selected using fenvalerate insecticide in the laboratory, the resistance factor of the strain was 199.54. Three degenerate primers were designed and used to perform PCR amplification. A cDNA encoding partial sodium channel gene was cloned from the fenvalerate-resistant and -susceptible strains. There were two nucleotide acid differences between fenvalerate-resistant strain and -susceptible strain, resulting in an amino acid mutation, Met→Leu. It is predicted that the mutation is related to the cotton aphid resistance to fenvalerate.展开更多
Salt and drought tolerance, high yield and quality, disease and pest resistance of cotton varieties are new requirements for the current situation in cotton production. Hengyou 12 is a transgenic Bt cotton variety bre...Salt and drought tolerance, high yield and quality, disease and pest resistance of cotton varieties are new requirements for the current situation in cotton production. Hengyou 12 is a transgenic Bt cotton variety bred by hybridizing JD 28 (interspeciflc progeny of upland cotton, sea-island cotton, wild cotton species) as female parent with GK55 (transgenic Bt cotton variety) as male parent. The combining of parents was based on the complementary principle of parental traits. Hengyou 12 with strong heterosis was selected under disease stress, pest stress, salt stress and drought stress. This variety has many excellent characteristics, such as good resis- tance to diseases and pests, high yield, excellent quality, strong drought resistance and salt tolerance. 'Hengyou12' was approved by Hebei Province in 2015, and is suitable for planting in middle and south areas of Hebei and similar ecological areas in the Yellow River basin.展开更多
The hybrid cotton varieties of Hanza 160 and Hanza 1692 were bred by reciprocal crosses between Han 5158 and Han 333 in Hainan and Hebei for several years. Both varieties had the characters of high yield, high quality...The hybrid cotton varieties of Hanza 160 and Hanza 1692 were bred by reciprocal crosses between Han 5158 and Han 333 in Hainan and Hebei for several years. Both varieties had the characters of high yield, high quality and disease resistance. Hanza 160 and Hanza 1692 were approved by Hebei Crop Variety Approval Committee in 2013 and 2016, respectively.展开更多
基金supported by the National Key Research and Development Program of China(2022YFF1001403)the Natural Science Foundation of Hebei Province,China(C2022204205)+1 种基金the National Natural Science Foundation of China(32372194)the National Top Talent Project and Hebei Top Talent,China。
文摘Improving plant resistance to Verticillium wilt(VW),which causes massive losses in Gossypium hirsutum,is a global challenge.Crop plants need to efficiently allocate their limited energy resources to maintain a balance between growth and defense.However,few transcriptional regulators specifically respond to Verticillium dahliae and the underlying mechanism has not been identified in cotton.In this study,we found that the that expression of most R2R3-MYB members in cotton is significantly changed by V.dahliae infection relative to the other MYB types.One novel R2R3-MYB transcription factor(TF)that specifically responds to V.dahliae,GhMYB3D5,was identified.GhMYB3D5 was not expressed in 15 cotton tissues under normal conditions,but it was dramatically induced by V.dahliae stress.We functionally characterized its positive role and underlying mechanism in VW resistance.Upon V.dahliae infection,the up-regulated GhMYB3D5 bound to the GhADH1 promoter and activated GhADH1expression.In addition,GhMYB3D5 physically interacted with GhADH1 and further enhanced the transcriptional activation of GhADH1.Consequently,the transcriptional regulatory module GhMYB3D5-GhADH1 then promoted lignin accumulation by improving the transcriptional levels of genes related to lignin biosynthesis(GhPAL,GhC4H,Gh4CL,and GhPOD/GhLAC)in cotton,thereby enhancing cotton VW resistance.Our results demonstrated that the GhMYB3D5 promotes defense-induced lignin accumulation,which can be regarded as an effective way to orchestrate plant immunity and growth.
文摘A plant expression vector containing a chimeric Bt29K gene coding for the activated Cry1Ac protein and the arrowhead proteinase inhibitior gene API B were introduced into the cotton cultivar Jihe321 mediated by Agrobactertium tumefaciens. Based on the results of kanamycin resistant testing, PCR detection for both foreign genes and insect bioassay using Heliethis armigera , nine transgenic homozygous cotton lines with insect resistance of more than 90% and better agronomic traits were bred through six generations from the original transgenic plants. Results from insect bioassay and sequence analysis of the PCR products of plants from some homozygous lines indicated that the chimeric Bt29K gene was stably inherited in these transgenic cotton lines. The main agronomic characters of these homozygous cotton lines, such as boll productivity and fibre strength, were better than that of the original cotton cv. Jihe321.
基金supported by the the Special Program for New Transgenic Variety Breeding of the Ministry of Science and Technology,China(2013ZX08012-005 and 2014ZX08012-005)
文摘We compared the ground-dwelling beetle assemblages under four scenarios in which transgenic Bt(Cry 1Ac) cotton(33B),transgenic Bt(Cry 1Ac)+CpTI cotton(SGK321),conventional cotton(33),conventional cotton(Shiyuan 321) in North China.During the survey in two years(2009-2010),24 ground beetle species were captured with pitfall traps in 20 plots which included five replicates for each cotton type.No significant difference was observed in the number of ground beetle species captured,activity density,evenness and Shannon-Wiener diversity among the four cotton varieties.Chlaenius posticalis was less abundant in transgenic Bt+CpTI cotton(SGK321) fields than its conventional cotton(Shiyuan 321),but more abundant in transgenic Bt cotton(33B) fields compared with its conventional cotton(33).There was no significant difference for other abundant species between in transgenic cotton and in conventional cotton fields.Based on non-metric multidimensional scaling(NMDS) analysis,ground-dwelling beetle assemblages were similar in transgenic and conventional cotton over the two years,but the ground-dwelling beetle assemblages in transgenic cotton 33 B significantly differed from that in the conventional cotton(strain 33) in 2010.No strong evidence that the transgenic cotton effect on ground-dwelling beetle assemblages was found in this study.
文摘[Objective] The aim of the research was to analyze the resistance of binary insect-resistant transgenic soybean to Heliothis viriplaca.[Method]In this experiment, resistance analysis of the stabilized binary insect-resistant transgenic soybean to Heliothis viriplaca was conducted in lab and in field conditions.[Result] The results indicated that the leaves of insect-resistant transgenic soybeans T5-150 and T5-195 showed lighter damage than those of non-transgenic soybeans. Meanwhile, the Heliothis viriplaca larvae fed on leaves of these two transgenic soybeans were characterized by less leaf consumption, shortening survival day, slower development and less pupation.[Conclusion]It was concluded that insect-resistance of transgenic soybean to Heliothis viriplaca was increased dramatically and the research provided a reference for selecting binary insect-resistant transgenic soybean to Heliothis viriplaca.
基金Supported by National Transgenic Major Project ( Safe Monitoring Technique of Transgenic Organism 2008ZX08012-004)~~
文摘[Objective] The aim was to learn the resistance of different tissues and organs of transgenic cotton to Spodoptera exigua (Hbner). [Method] Flowers,the 1st,the 3rd,the 6th and the 14th leaves from the top of 33B,GK12 and SGK321 were used to feed S. exigua neonates respectively. Survival larvae and dead ones were counted on the 3rd,the 7th,the 10th,the 16th and the 19th day; meanwhile,the pupae amount was recorded,and the pupae weight was measured at the 24th h after pupation. [Result] The survival curves,pupation rates and pupae weights of S. exigua feeding on different tissues of transgenic cotton were not significantly different from those of S. exigua feeding on the corresponding tissues of conventional cotton; pupation rate of S. exigua feeding on different leaves of the same cotton variety were not significantly different from each other,but all higher than that of S. exigua feeding on the flowers of that cotton; and there were no differences among pupation weights of S. exigua feeding on different leaves or flowers of the same cotton variety. [Conclusion] Transgenic cotton showed weak resistance to S. exigua. Hence,in the transgenic cotton fields,more attention should be paid to occurrence trend of S. exigua and its control.
基金ThePresidentialFoundationofTheChineseAcademyofSciences NaturalScienceFoundationofHebeiProvince China
文摘Partially modified Bt Cry1Ac gene and the arrowhead proteinase inhibitor (API) gene were used to construct a plant transformation vector pBtiA and this construct was transferred into the genome of the hybrid poplar 741 [ Populus alba L.×( P. davidiana Dode+ P. simonii Carr.)× P. tomentosa Carr.] by Agrobacterium _ mediated transformation. Ten kanamycin resistant plants have been regenerated. Upon insect bioassay using Clostera anachoreta (Fabricius), three of the examined plants were demonstrated to be highly resistant to the testing insects. The mortality of insect larvae on one plant was higher than 90% in 6 days after infestation and the growth of the survival larvae were seriously inhibited. Results of PCR and Southern blot analysis indicated that both Bt Cry1Ac gene and API gene were integrated as a single copy into the genomes of these three plants when Cry1Ac gene fragment was used as the probe. Protein dot blot immunoassay and ELISA analysis revealed that at least the Cry1Ac protein was produced in these three transgenic plants and the expression levels were estimated to be approximately 0.015% of the leaf total soluble protein. This is the first report on insect resistant transgenic hybrid poplar 741 that expresses two insecticidal protein genes.
基金supported by the National Key Research and Development Program of China(2019YFD1002603-1)。
文摘PCR detection,quantitative real-time PCR(q-RTPCR),outdoor insect resistance,and disease resistance identification were carried out for the detection of genetic stability and disease resistance through generations(T2,T3,and T4)in transgenic maize germplasms(S3002 and 349)containing the bivalent genes(insect resistance gene Cry1Ab13-1 and disease resistance gene NPR1)and their corresponding wild type.Results indicated that the target genes Cry1Ab13-1 and NPR1 were successfully transferred into both germplasms through tested generations;q-PCR confirmed the expression of Cry1Ab13-1 and NPR1 genes in roots,stems,and leaves of tested maize plants.In addition,S3002 and 349 bivalent gene-transformed lines exhibited resistance to large leaf spots and corn borer in the field evaluation compared to the wild type.Our study confirmed that Cry1Ab13-1 and NPR1 bivalent genes enhanced the resistance against maize borer and large leaf spot disease and can stably inherit.These findings could be exploited for improving other cultivated maize varieties.
文摘A plant expression vector carrying both pea lectin gene and Soybean trypsin inhibitor gene has been constructed and transferred into tobacco via Agrobacterium mediated transformation. Transgenic plants are further confirmed by ELISA, PCR and PCR Southern assays. Results of bioassays show that transgenic plants display notably inhibitory effects to larvae development and survival of Heliothis armigera Hubner.
文摘Background:Sucking insect pests cause severe damage to cotton crop production.The development of insect resistant cotton cultivars is one of the most effective measures in curtailing the yield losses.Considering the role of morphological and biochemical host plant resista nee(HPR)traits in plant defense,12 cotton genotypes/varieties were evaluated for leaf area,leaf glanding,total soluble sugars,total soluble proteins,total phenolics,tannin and total flavonoids against fluctuating populations of whitefly,thrips and jassid under field conditions.Results:The population of these insects fluctuated during the growing seas on and remained above threshold level(whitefly>5,thrips>(8-10)f or jassid>1 per leaf)during late June and early July.Strong and negative association of whitefly(r=-0.825)and jassid(r=-0.929)with seed cotton yield was observed.Mean population of insects were the highest in Glandless-1 followed by NIA-82 and NIA-M30.NIAB-Kiran followed by NI AB-878 and Sadori were the most resistant,with the mean population of 1.41,1.60,1.66(whitefly);2.24,232,2.53(thrips)and 037,0.31,036(jassid),respectively.The resistant variety NIAB-Kiran showed less soluble sugars(8.54 mg.g^(-1)),soluble proteins(27.11 mg.g^(-1))and more phenolic(36.56 mg.g^(-1))and flavonoids(13.10mg.g^(-1))as compared with the susceptible check Glandless-1.Moreover,all insect populations were positively correlated with total soluble sugars and proteins.Whitefly populations exhibited negative response to leaf gossypol glands,total phenolics,tannins and flavonoids.The thrips and jassid populations had a significant and negative correlation with these four biochemical HPR traits.Conclusion:The ide ntified resistant resources and HPR traits can be deployed against sucking in sect pests'complex in future breeding programs of developing insect resistant cotton varieties.
基金Supported by Grants from China National Major Special Project on New Varieties Cultivation for Transgenic Organisms(2008ZX08001-001)
文摘Focusing on several commonly used insect resistance genes,we reviewed the advances in insect-resistant transgenic rice,and analyzed the problems and developing tendency in transgenic rice research in this paper.
基金supported by funding from the Natural Science Foundation of Henan Province,China(232300421010)the Key Research and Development Project of Henan Province,China(231111110400)+4 种基金the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City,China(320LH045)the Hainan Yazhou Bay Seed Laboratory,China(B21HJ0215)the Fundamental Research Funds of State Key Laboratory of Cotton Biology,China(2021CBE03)the Central Public-interest Scientific Institution Basal Research Fund,China(Y2023XK16)the Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIPIVFCAAS to F.G.L)。
文摘EPSPS is a key gene in the shikimic acid synthesis pathway that has been widely used in breeding crops with herbicide resistance.However,its role in regulating cell elongation is poorly understood.Through the overexpression of EPSPS genes,we generated lines resistant to glyphosate that exhibit an unexpected dwarf phenotype.A representative line,DHR1,exhibits a stable dwarf phenotype throughout its entire growth period.Except for plant height,the other agronomic traits of DHR1 are similar to its transgenic explants ZM24.Paraffin section observations showed that DHR1 internodes are shortened due to reduced elongation and division of the internode cells.Exogenous hormones confirmed that DHR1 is not a classical brassinolide(BR)-or gibberellin(GA)-related dwarfing mutant.Hybridization analysis and fine mapping confirmed that the EPSPS gene is the causal gene for dwarfism,and the phenotype can be inherited in different genotypes.Transcriptome and metabolome analyses showed that genes associated with the phenylpropanoid synthesis pathway are enriched in DHR1 compared with ZM24.Flavonoid metabolites are enriched in DHR1,whereas lignin metabolites are reduced.The enhancement of flavonoids likely results in differential expression of auxin signal pathway genes and alters the auxin response,subsequently affecting cell elongation.This study provides a new strategy for generating dwarfs and will accelerate advancements in light simplification in the cultivation and mechanized harvesting of cotton.
基金financially supported in part by the National Natural Science Foundation of China (31171590)the National High-Tech R&D Program of China (863 Program, 2012AA101108)+2 种基金the Jiangsu Agriculture Science and Technology Innovation Fund, China (cx(13)3059)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (010-809001)the Jiangsu Collaborative Innovation Center for Modern Crop Production, China (No. 10)
文摘Cotton Verticillium wilt is a serious soil-borne disease that leads to significant losses in fiber yield and quality worldwide. Currently, the most effective way to increase Verticillium wilt resistance is to develop new resistant cotton varieties. Lines 5026 and 60182 are two Verticillium wilt-resistant upland cotton accessions. We previously identified a total of 25 quantitative trait loci(QTLs) related to Verticillium wilt resistance from 5026 and 60182 by assembling segregating populations from hybridization with susceptible parents. In the current study, using 13 microsatellite markers flanking QTLs related to Verticillium wilt resistance, we developed 155 cotton inbred lines by pyramiding different QTLs related to Verticillium wilt resistance from a filial generation produced by crossing 5026 and 60182. By examining each allele's effect and performing multiple comparison analysis, we detected four elite QTLs/alleles(q-5/NAU905-2, q-6/NAU2754-2, q-8/NAU3053-1 and q-13/NAU6598-1) significant for Verticillium wilt resistance, pyramiding these elite alleles increased the disease resistance of inbred lines. Furthermore, we selected 34 elite inbred lines, including five lines simultaneously performing elite fiber quality, high yield and resistance to V. dahliae, 14 lines with elite fiber quality and disease resistance, three lines with high yield and disease resistance, and 12 lines with resistance to V. dahliae. No correlation between Verticillium wilt resistance and fiber quality traits/yield and its components was detected in the 155 developed inbred lines. Our results provide candidate markers for disease resistance for use in marker-assisted breeding(MAS), as well as elite germplasms for improving important agronomic traits via modern cotton breeding.
基金This work was supported by the Genetically Modified Organisms Breeding Major Project of China(2019ZX08010004–004)the National Natural Science Foundation of China(31901579).
文摘The introduction of Bacillus thuringiensis(Bt)cotton has reduced the burden of pests without harming the environment and human health.However,the efficacy of Bt cotton has decreased due to field-evolved resistance in insect pests over time.In this review,we have discussed various factors that facilitate the evolution of resistance in cotton pests.Currently,different strategies like pyramided cotton expressing two or more distinct Bt toxin genes,refuge strategy,releasing of sterile insects,and gene silencing by RNAi are being used to control insect pests.Pyramided cotton has shown resistance against different cotton pests.The multiple genes pyramiding and silencing(MGPS)approach has been proposed for the management of cotton pests.The genome information of cotton pests is necessary for the development of MGPS-based cotton.The expression cassettes against various essential genes involved in defense,detoxification,digestion,and development of cotton pests will successfully obtain favorable agronomic characters for crop protection and production.The MGPS involves the construction of transformable artificial chromosomes,that can express multiple distinct Bt toxins and RNAi to knockdown various essential target genes to control pests.The evolution of resistance in cotton pests will be delayed or blocked by the synergistic action of high dose of Bt toxins and RNAi as well as compliance of refuge requirement.
文摘In this paper,the wrinkle resistant finishing of cotton fabric with the complex system of PBTCA and CA was mainly discussed.The influence of finishing conditions such as the amount of finishing agent and catalyst,curing temperature and curing time were studied.Wrinkle recovery angle(WRA),breaking strength(BS) and whiteness(Wh) of finished fabric were measured.The experimental data indicated that the best finishing conditions were PBTCA 120g/L,CA 50g/L,sodium hypophosphite 50g/L,triethanolamine 20g/L,cured 170℃ for 120s.
文摘To analyse the combining ability and heterosis between high-strength lines and transgenic Bt bollworm-resistant lines in upland cotton, 5 high-strength lines were crossed as female lines with 12 transgenic Bt bollworm-resistant lines according to NCII design. It was demonstrated that the compositions of variance in various traits were quite different. For seed cotton yield, lint yield, boll numbers per plant and boll weight, the dominant (special combining ability) effects were the major effects, accounting for 87.38, 84. 40, 80. 04 and 64. 46% of the total phenotypic variances, respectively, while for fibre strength and micronaire value, the additive (general combining ability) effects had the major effects, with a ratio of additive variance to phenotypic variance of 78.85 and 43.80%. As for lint percent and 2.5% span length, the dominant and additive variances had similar effects, in phenotypic variances (54.94 and 40.11% for lint percent, 45.76 and 42.49% for 2. 5% span length, respectively). The mid-parent heterosis (Hpm), surpassing parent heterosis (Hpb) and competitive heterosis (Hck) for seed cotton yield and lint yield were both extremely significant. For fibre properties, the Hck and Hpm of 2.5 % fibre span length were extremely significant, the Hck of fibre strength was significant, and the favorable negative Hck of micronaire was also extremely significant. The increments of hybrid over common variety were 17% for lint yield and fibre strength, 7% for fibre span length, and 4 % for fineness.
基金supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2008348)the China National Science & Technology Major Project for Breeding New Plant Varieties of Genetically Modified Organisms (GMOs) (Grant No. 2008ZX08001-004)
文摘The plasmid of pCDMARUBA-Hyg, which contained two insect-resistance genes, sbk (modified from CrylA(c)) and sck (modified from CpTI), was transformed into an Agrobacterium EHA105 for infection of the calli of a super japonica rice Nanjing 45. Primarily, using polymerase chain reaction (PCR) detection with the primers of sbk and sck genes, 42 positive transgenic plants that were marker-free and contained the two target genes were selected from 97 regenerated plants. Results of southern-blotting indicated that 23, 11, 5, 2 and 1 plants had one, two, three, four and five copies of the transformed genes, respectively. Analysis of reverse transcription PCR (RT-PCR) and Bt gene testing paper showed that 28 T3 generation plants derived from four transgenic plants having a single copy were insect-resistant. Feeding experiment with rice stem borer revealed that the insect resistance was greatly increased with the larva mortality ranging from 94% to 100%. In addition, among the transgenic plants, three T3 transgenic plants possessed some desirable characteristics for breeding and production, such as plant height, seed-setting rate, 1000-grain weight and larva mortality. The mechanism of insect resistance of Bt .qene and its application in rice transgenic research were also briefly discussed.
文摘In order to improve insect-resistance of cottonand cultivate new cotton varieties,tissue cultureand plant regeneration of cotton(Gossypiumhirsutum L.)were studied with Xinluzao 4,Xi550,Jizi 492,Hengwu 89-30,Han 93-2 and Jizi123.A system of cotton tissue culture for
基金supported by the National 973 Program(G2000016207)National 863 Program,China(2001AA249041).
文摘The strain of fenvalerate-resistant cotton aphids was selected using fenvalerate insecticide in the laboratory, the resistance factor of the strain was 199.54. Three degenerate primers were designed and used to perform PCR amplification. A cDNA encoding partial sodium channel gene was cloned from the fenvalerate-resistant and -susceptible strains. There were two nucleotide acid differences between fenvalerate-resistant strain and -susceptible strain, resulting in an amino acid mutation, Met→Leu. It is predicted that the mutation is related to the cotton aphid resistance to fenvalerate.
基金Supported by Subproject of New Transgenic Variety Breeding Major Project(2008ZX-08005-003)Hebei Cotton Industry Technology System(1004008)Hebei Science and Technology Program(16226303D)~~
文摘Salt and drought tolerance, high yield and quality, disease and pest resistance of cotton varieties are new requirements for the current situation in cotton production. Hengyou 12 is a transgenic Bt cotton variety bred by hybridizing JD 28 (interspeciflc progeny of upland cotton, sea-island cotton, wild cotton species) as female parent with GK55 (transgenic Bt cotton variety) as male parent. The combining of parents was based on the complementary principle of parental traits. Hengyou 12 with strong heterosis was selected under disease stress, pest stress, salt stress and drought stress. This variety has many excellent characteristics, such as good resis- tance to diseases and pests, high yield, excellent quality, strong drought resistance and salt tolerance. 'Hengyou12' was approved by Hebei Province in 2015, and is suitable for planting in middle and south areas of Hebei and similar ecological areas in the Yellow River basin.
基金Supported by the Key Technology R&D Program of Hebei Province(16226307D-4)
文摘The hybrid cotton varieties of Hanza 160 and Hanza 1692 were bred by reciprocal crosses between Han 5158 and Han 333 in Hainan and Hebei for several years. Both varieties had the characters of high yield, high quality and disease resistance. Hanza 160 and Hanza 1692 were approved by Hebei Crop Variety Approval Committee in 2013 and 2016, respectively.