The use of insecticides remain the most effective vector control approach for mosquito borne diseases like malaria,dengue fever,chikungunya,and Zika virus disease;however,their increasing resistance has complicated th...The use of insecticides remain the most effective vector control approach for mosquito borne diseases like malaria,dengue fever,chikungunya,and Zika virus disease;however,their increasing resistance has complicated the management.Mutations in kdr,ace-1/ace-2,rdl,and nAChR,are involved in target-site mediated resistance and prevent the binding of pyrethroids and dichlorodiph enyltrichloroethane,organophosphorus pesticide,carbamates and cyclodienes,respectively.Here,we review the current knowledge on target-site mediated insecticidal resistance mechanisms in major mosquito vectors and the techniques used to identify these mutations.The results showed that kdr mutations are frequently reported in mosquito species,indicating the overuse of pyrethroid in mosquito control.Report on ace mutations is very limited,primarily detected in Anopheles and Culex,with extremely low detection rate in Aedes,despite the wide application of organophosphates in their control.Notably,reports of rdl mutations and changes in nAChR are rare,which provides an opportunity to exploit these target sites,particularly in the event of disease outbreaks.Among various detection methods such as RFLP,TaqMan,Multiplex PCR and FRET,allele-specific PCR is mostly employed,especially in detecting kdr mutation.However,allele-specific PCR cannot detect novel mutation.As a result,there is an urgent need to develop a scalable,cost-effective tool that can be widely applied especially as these mutations are genetic markers for early detection of insecticide resistance.Robust monitoring methods remain critical to manage insecticide resistance and effective control of mosquito-borne diseases.展开更多
Background The cryptic nature of pink bollworm Pectinophora gossypiella(Saunders)larvae enables its reduced vul-nerability to insecticidal control.Further,the development of resistance against Bacillus thuringiensis(B...Background The cryptic nature of pink bollworm Pectinophora gossypiella(Saunders)larvae enables its reduced vul-nerability to insecticidal control.Further,the development of resistance against Bacillus thuringiensis(Bt)toxins posed a serious threat to transgenic cotton cultivation.This necessitated determining the critical timing of spray applications on the control effectiveness.This study assessed the influence of egg age(freshly laid vs.three-day-old)and the loca-tion of larvae(directly exposed to the insecticide residues on the boll rind vs.burrowed inside the bolls)on insecticide control efficacy.Results The results revealed a significant decrease in the ovicidal activity of tested insecticides with an increase in the age of eggs from one day old to three days old(paired t-test,P<0.05).The larvae directly exposed to the insec-ticide residues on the boll rind were more susceptible(>80%mortality)than the larvae exposed after they had bur-rowed inside the bolls(<49%mortality).The inhibitory effects of tested insecticides on developmental biology were more pronounced in the experiment on pre-larval release insecticide treatment compared with insecticide treatment given post-larval release and entry inside the bolls.Conclusion Egg age influences the insecticide susceptibility,as does the larval location,directly exposed vs bur-rowed inside the bolls.Older eggs and the larvae that had burrowed inside the green bolls of cotton were relatively less susceptible to the insecticide treatments.The toxic effects of insecticides on egg and larval stages were primar-ily ephemeral.These findings are significant for devising a comprehensive strategy for pink bollworm management on a sustainable basis.展开更多
Chemical insecticides have been considered as a means to combat crop pests. Although their effectiveness is evident, their impact on the environment is increasingly being discussed. The aim of this study is to determi...Chemical insecticides have been considered as a means to combat crop pests. Although their effectiveness is evident, their impact on the environment is increasingly being discussed. The aim of this study is to determine the agro-ecological potential of a biological insecticide (C<sub>25</sub>H<sub>32</sub>O<sub>12</sub>) based on Aloe barbadensis in a Sahelian context. For this purpose, a completely randomized block experimental design with 3 replications and 4 treatments was set up to experiment with Aloe barbadensis as a bioinsecticide against pests of Abelmoschus esculentus. However, data were collected using an observation and parameter monitoring grid. This includes the cultivation of Abelmoschus esculentus, soil preparation, seeding and watering, plot labeling, preparation of the bioinsecticide (selection and preparation of raw materials, grinding of Aloe barbadensis miller and extraction of the crude bioinsecticide, quantification of treatment doses and dilution, and obtaining the formulated bioinsecticide), plant watering, plant treatment, and finally parameter monitoring. The results obtained reveal that the level of damage is significantly high in the control treatment T0 (63%) compared to the other treatments, with 29% for treatment T1, 7% for T2, and 1% for T3, implying a strong action capability of this insecticide against pests of Abelmoschus esculentus. Therefore, it can be concluded that for a normal growing season of Abelmoschus esculentus, this biological insecticide should be sprayed 12 times. Furthermore, this biological insecticide is unique in that it does not inflict any gastric toxicity on the pests, which gives it the characteristic of being a repellent. It is a biological insecticide whose efficacy period has been tested, with a minimum duration of 21 days. In conclusion, this formulated bioinsecticide based on Aloe barbadensis demonstrates significant efficacy against pests of Abelmoschus esculentus. In the future, we will consider experimenting with its effectiveness against pests of other plants.展开更多
Background & Objectives: Epidemics of arboviruses such as Dengue, Chikungunya and Zika have been recorded in recent years indicating that Aedes aegypti and Aedes albopictus are both important and very active vecto...Background & Objectives: Epidemics of arboviruses such as Dengue, Chikungunya and Zika have been recorded in recent years indicating that Aedes aegypti and Aedes albopictus are both important and very active vectors in Africa. For vector control, insecticides are on the front line, unfortunately, reported resistance jeopardizes the effectiveness of this strategy. The objective of this review was to determine the geographical distribution and insecticide resistance mechanisms of Ae. aegypti and Ae. Albopictus in Africa. Methods: A systematic review of the literature in scientific databases (PubMed, Google Scholar, ScienceDirect, Hinari) allowed us to identify relevant articles on the geographical distribution of Aedes aegypti, Aedes albopictus and arboviral diseases. On the other hand, studies related to insecticides used in vector control against Aedes, associated resistances and their molecular and metabolic mechanisms. Results: A total of 94 studies met the inclusion criteria for this search. Aedes aegypti is reported in most of Africa, and Aedes albopictus in part. There is a re-emergence and outbreak of Arbovirus epidemics in West and Central Africa. The insecticides used were organochlorines, carbamates, organophosphates and pyrethroids. In Aedes, target site insensitivity and metabolic resistance would be the 2 main mechanisms of resistance to these insecticides. Interpretation & Conclusion: Resistance has been recorded in all four major classes of insecticides recommended by WHO for vector control and eradication. New vector control methods such as the use of plant extracts with larvicidal and adulticidal activities, advanced modern biotechnology techniques, and nanobiotechnology need to be developed.展开更多
The efficacy of insecticide-treated nets (ITNs) is increasingly compromised by the prevalence of malaria vectors resistant to pyrethroids. In response to this issue, a new generation of ITNs has been developed that in...The efficacy of insecticide-treated nets (ITNs) is increasingly compromised by the prevalence of malaria vectors resistant to pyrethroids. In response to this issue, a new generation of ITNs has been developed that incorporate synergistic components, such as piperonyl butoxide (PBO). The purpose of this study is to provide entomological evidence for the efficacy of a PBO-based ITN brand at the village level, serving as a basis for decision-making before large-scale net deployment. During the high malaria transmission period, ITNs were distributed in each group and vector sampling was conducted biweekly in selected households. Bionomic data were collected to assess the resistance of wild An. gambiae populations to various chemical insecticides. There was a significant disparity in total An. gambiae sl. collected between the ITN arms, the intervention arm (ITN arms), and the control arm (P = 0.003). An. coluzzi was identified as the predominant species in the study area, as confirmed by PCR analysis. Analysis of the blood-feeding inhibition rate revealed that 100% permethrin + PBO ITN exhibited significantly greater inhibition than 66.81% permethrin only ITN. According to the log-time probit regression analysis, permethrin exhibited a knockdown time of 256 min without synergists, while it decreased to 139 min (P = 0.001) when pre-exposed to PBO. The evidence from this trial supports the use of PBO ITNs over standard ITNs for pyrethroids to combat pyrethroid resistance and improve protection against malaria for both individuals and communities, particularly in areas with high pyrethroid resistance.展开更多
[Objective] The aim was to determine control effects of the 6 insecticides and recommended the optimal doses. [Method] In 2014, the control effects of sophocarpidine, pymetrozine, beta-cypermethrin, acetamiprid, imida...[Objective] The aim was to determine control effects of the 6 insecticides and recommended the optimal doses. [Method] In 2014, the control effects of sophocarpidine, pymetrozine, beta-cypermethrin, acetamiprid, imidacloprid, and chlor- pyrifos on wheat aphids were tested, and every pesticide was designed with three doses in Shou County, Anhui Province, to explore the significance of differences on control effects. [Result] The results showed that the control effects of the 6 insecti- cides were satisfied, and the insecticides were safe on wheat. [Conclusion] During initial diseasing stage of aphid, it is recommended to use sophocarpidine soluble concentrate (1.5%), pymetrozine water dispersible granule (50%), imidacloprid wet- table powder (25%), and acetamiprid wettable powder (5%), and chlorpyrifos missi- ble oil (40%), cypermethrin missible oil (4.5%) and imidacloprid wettable powder (25%) can be applied in peak-diseasing stage.展开更多
The resistance of field populations of Plutella xylostella, from the three vegetable producing areas (Nianyuxu Town of Yueyang City, Canggang Town of Changde City and Shatou Town of Yiyang City) in northern Hunan, t...The resistance of field populations of Plutella xylostella, from the three vegetable producing areas (Nianyuxu Town of Yueyang City, Canggang Town of Changde City and Shatou Town of Yiyang City) in northern Hunan, to seven insecticides was determined using leaf dipping method in door. The results showed that Plutella xylostella showed an extremely high-level resistance to beta-cypermethrin (resistance ratio, RR=257.13), a high-level resistance to abamectin (RR=135.15) and indoxacarb (RR=103.08) and a moderate-level resistance to chlorfenapyr and emamectin benzoate. But Plutella xylostella is relatively sensitive to chlorantraniliprole and Bacillus thuringiensis (Bt). Therefore, the prevention of Plutella xylostella in northern Hunan should focus on the alternative use of chlorfenapyr, emamectin benzoate, chlorantraniliprole and Bacillus thuringiensis and avoid the use of beta-cypermethrin so as to delay the generation and development of resistance to insecticides in Plutella xylostella.展开更多
[Objective] The aim was to select insecticides effective in contrlling Pseudaulacaspis pentagona Infecting Pitaya. [Method] Efficacy effects of 11 insecticides in 22 concentrations were performed on Pseudaulacaspis pe...[Objective] The aim was to select insecticides effective in contrlling Pseudaulacaspis pentagona Infecting Pitaya. [Method] Efficacy effects of 11 insecticides in 22 concentrations were performed on Pseudaulacaspis pentagona Infecting Pitaya. [Result] When the insecticides were sprayed after 14 d, the treatment group with 22.4% spirotetramat SC at two concentrations proved the best, with control effects at 95.24% and 92.05%, followed by Nurelle at two concentrations, with control effects at 90.86% and 89.19%, and the control effects of chlorpyrifos (x2 000) was the poorest at only 67.08%. Therefore, it is feasible to make use of 22.4% spirotetramat SC, chlorpyrifos EC and Nurelle EC alternatively in controlling Pseudaulacaspis pentagona in case of pesticide resistance. [Conclusion] The research provided references for scientific use of insecticides in controlling Pseudaulacaspis pentagona Infecting Pitaya.展开更多
Luseweilei is an easily-bursted microcapsule insecticide. A test of effectiveness of the insecticide to control the larvae of Dendrolimus superans T. was carried out in larch forest in Baoan Forest Farm of Nehe City, ...Luseweilei is an easily-bursted microcapsule insecticide. A test of effectiveness of the insecticide to control the larvae of Dendrolimus superans T. was carried out in larch forest in Baoan Forest Farm of Nehe City, Heilongjiang Province, in April 2001. The solutions of different concentrations (1:150, 1:250, 1:350, and 1:450 Luseweilei : water) were sprayed on the larch trunk before the overwintering larvae climbing on trees and the spraying lengths (height) designed were 1.0, 2.5, and 3.5 m high from ground. The control result showed that spraying 150-, 250-, and 350-fold solutions of the insecticide all produced a good control result, with a mortality rate of 97%, but the 450-fold solution only produced 70% mortality. It is concluded that this insecticide can be used as a kind of good insecticide to control the overwintering larvae of D. superans in spring. Spraying 350-fold solution of easy-burst microcapsule insecticide and one meter spraying length are recommended for the future application..展开更多
Cucumber (Cucumis sativus) is one of the most widely used vegetable in the world,and different pesticides have been extensively used for controlling the insects and disease pathogens of this plant.However,little is kn...Cucumber (Cucumis sativus) is one of the most widely used vegetable in the world,and different pesticides have been extensively used for controlling the insects and disease pathogens of this plant.However,little is known about how the pesticides affect the microbial community in cucumber phyllosphere.This study was the first attempt to assess the impact of pyrethroid insecticide cyperemethrin on the microbial communities of cucumber phyllosphere using biochemical and genetic approaches.Phospholipid fatty ac...展开更多
Chemical pesticides play crucial roles in the management of crop diseases and pests. However, excessive and irrational use of pesticides has become a major concern and obstacle to sustainable agriculture. As a result,...Chemical pesticides play crucial roles in the management of crop diseases and pests. However, excessive and irrational use of pesticides has become a major concern and obstacle to sustainable agriculture. As a result, the quality and security of agricultural products are reduced, and the ecological and environmental integrities are threatened. Recently, environment-friendly pest management measures have been introduced and adopted to manage rice insect pests and reduce the use of insecticides. This paper reviewed the advancements in development and application of non-chemical technologies for insect pest management during rice production in China.展开更多
Fall armyworm has invaded China and colonized its populations in tropical and sub-tropical regions of South China since December 2018.Chemical spray has been widely used to control the pest,which shall lead to resista...Fall armyworm has invaded China and colonized its populations in tropical and sub-tropical regions of South China since December 2018.Chemical spray has been widely used to control the pest,which shall lead to resistance evolution.In this research,we collected five populations of the pest from Yunnan,Hainan,Tibet,and Fujian of China,and tested their susceptibilities to pyrethroid,organophosphorus,oxadiazine,diamide,antibiotics and other types of insecticides(14 insecticides totally)in the laboratory.Based on the susceptible baseline published from the previous studies,the resistance ratio was 615-1068-fold to chlorpyrifos,60-388-fold to spinosad,26-317-fold to lambda-cyhalothrin,13-29-fold to malathion,9-33-fold to fenvalerate,8-20-fold to deltamethrin,3-8-fold to emamectin benzoate and 1-2-fold to chlorantraniliprole,respectively.The median lethal concentration(LC_(50))of other six insecticides without the susceptible baselines was 148.27-220.96μgmL^(-1) for beta-cypermethrin,87.03-128.43μgmL^(-1) for chlorfenapyr,16.35-99.67μgmL^(-1) for indoxacarb,10.55-51.01μgmL^(-1) for phoxim,7.08-8.78μgmL^(-1) for M-EBI(the mixed insecticide of emamectin benzoate and indoxcarb)and 1.49-4.64μg mL^(-1) for cyantraniliprole.This study can be helpful for chemical control as well as for resistance monitoring and management of the pest in China.展开更多
Distribution of horizontal boom produced droplets downwards into maize canopies at flowering period and its effects on the efficacies of emamectin benzoate, lambda-cyhalothrin and chlorantraniliprole against the secon...Distribution of horizontal boom produced droplets downwards into maize canopies at flowering period and its effects on the efficacies of emamectin benzoate, lambda-cyhalothrin and chlorantraniliprole against the second generation of Asian corn borer (ACB) larvae and their toxicity to spiders were studied. When insecticides were sprayed downwards into the maize canopies, randomly filtering out droplets by upper leaves led to great variations of droplet coverage and density within the canopies. Consequently, the efficacies of lambda-cyhalothrin and emamectin benzoate against ACB larvae were decreased because of randomly filtering out droplets by upper leaves. But field investigation showed that lambda-cyhalothrin was extremely toxic to hunting spiders, Xysticus ephippiatus, and not suitable to IPM programs in regulation of the second generation of ACB. Therefore, randomly filtering out droplets by upper leaves decreased lambda-cyhalothrin's efficacy against ACB larvae, but did little to decrease its toxicity to X. ephippiatus. Amamectin benzoate can reduce the populations of X. ephippiatus by 58.1-61.4%, but the populations can recover at the end of the experiment. Chlorantraniliprole was relatively safe to X. ephippiatus. It only reduced the populations of X. ephippiatus by 22.3-33.0%, and the populations can totally recover 9 d after application.展开更多
The combinative rate measurement of (3-[I125] iodotyrosyl) α-bungarotoxin was applied in the analysis of the relation between nerve acetylcholine receptor and three types of insecticide resistance in diamondback mo...The combinative rate measurement of (3-[I125] iodotyrosyl) α-bungarotoxin was applied in the analysis of the relation between nerve acetylcholine receptor and three types of insecticide resistance in diamondback moth, Plutella xylostella (L.). In the dimehypo-resistant strain and in the cartap-resistant strain, the nerve acetylcholine receptor showed the remarkable insensitivity to dimehypo and cartap, of which the binding rate to ligand was approximately 66 and 60%, respectively, of the susceptible strain. The sensitivity to deltamethrin in the deltamethrin-resistant strain did not show visible change. These results indicated that the decline in the sensitivity of nerve acetylcholine receptor to insecticide might be a potential mechanism to nereistoxin insecticides resistance in the diamondback moth.展开更多
Resistance of five field populations of Mythimna separata(Walker) collected from Shaanxi and Shanxi provinces of China to six different insecticides was evaluated by leaf dip method in the laboratory. The results sh...Resistance of five field populations of Mythimna separata(Walker) collected from Shaanxi and Shanxi provinces of China to six different insecticides was evaluated by leaf dip method in the laboratory. The results showed that all populations were relatively sensitive to emamectin benzoate with a resistance ratio(RR) of 0.583–1.583 folds. All populations showed susceptible or low level resistance to chlorantraniliprole and beta-cypermethrin. Compared with a relatively susceptible strain of M. separata, the resistance level of the whole populations ranged from susceptible to moderate to chlorpyrifos and lambda-cyhalothrin, moderate to high to phoxim(RR=19.367–70.100) except for population from Sanyuan County(RR=2.567). Pair-wise correlation analysis among different insecticides indicated that chlorpyrifos has a significantly positive and significant correlation with emamectin benzoate. Chlorantraniliprole didn't have significant correlation with emamectin benzoate, chlorpyrifos and phoxim. Therefore, emamectin benzoate, chlorantraniliprole and beta-cypermethrin are recommended to control oriental armyworm. Meanwhile, to postpone the occurrence and development of insecticide resistance in Shaanxi and Shanxi provinces, alternative and rotational application of insecticides between chlorantraniliprole and emamectin benzoate or chlorpyrifos is necessary.展开更多
Objective:To elucidate the larvicidal potency of neem, chinaberry and Bacillus thuringiensis israelensis(Bti) to larvae of Anopheles arabiensis under semi-field condition and adult susceptibility/resistance to the con...Objective:To elucidate the larvicidal potency of neem, chinaberry and Bacillus thuringiensis israelensis(Bti) to larvae of Anopheles arabiensis under semi-field condition and adult susceptibility/resistance to the conventionally used insecticides in Tolay,Southwestern Ethiopia.Methods: Wild collected 3rd and 4th stage larvae were exposed to neem, and chinaberry seed powder dissolved in water and Bti in artificial containers at three treatment levels:0.2, 0.1 and 0.05 g/m^2 and controls were free of treatments. Larval and pupal mortalities were monitored daily and residual activities were determined. The experiments were replicated three times. The World Health Organization tube test for all classes of insecticides was conducted on adult Anopheles arabiensis reared from field collected larvae and pupae. Data were analyzed using STATA software version 11.Results: In the first application, neem powder caused 88.9%, 87.9% and 79.4% larval and pupal mortality at 0.2, 0.1 and 0.05 g/m^2 after 4.3, 6.0 and 5.7 days, respectively. The corresponding killing effect of chinaberry was 80.3%, 62.1% and 30.3% after 7.0, 7.7 and 8.3days respectively. Bti at all treatments killed 100% after 24 h except 2.7 days for 0.05 g/m^2.Adult mosquitoes were susceptible only for fenitrothion and pirimiphos-methyl with 100%mortality while resistant to deltamethrin, alpha-cypermethrin, etofenprox and dichlorodiphenyl-tricgloroethane with only 9.0%, 3.0%, 5.1% and 2.0% mortalities respectively.Conclusions: Neem, chinaberry and Bti showed potent larvicidal and pupicidal activities. However, in the area, high level of mosquito resistance to pyrethroids and dichlorodiphenyl-tricgloroethane was seen which will pose serious challenge to vector control in the future. Therefore, using integrated approach including these botanical larvicides is warranted to manage insecticide resistance.展开更多
Susceptibility to insecticides was investigated by collecting field populations of brown planthopper from different locations of southern Karnataka, India (Gangavati, Kathalagere, Kollegala, Soraba and Mandya). All ...Susceptibility to insecticides was investigated by collecting field populations of brown planthopper from different locations of southern Karnataka, India (Gangavati, Kathalagere, Kollegala, Soraba and Mandya). All the field populations differed in their susceptibility to insecticides. In general, Soraba and Mandya populations were more susceptible to insecticides compared to Gangavati and Kathalagere populations. The resistance ratios varied greatly among the populations viz., chlorpyriphos (1.13- to 16.82-fold), imidacloprid (0.53- to 13.50-fold), acephate (1.34- to 5.32-fold), fipronil (1.13- to 4.06-fold), thiamethoxam (1.01- to 2.19-fold), clothianidin (1.92- to 4.86-fold), dinotefuran (0.82- to 2.22- fold), buprofezin (1.06- to 5.43-fold) and carbofuran (0.41- to 2.17-fold). The populations from Gangavati Kathalagere and Kollegala exhibited higher resistance to some of the old insecticides and low resistance to new molecules.展开更多
Objective: To evaluate the susceptibility of Anopheles stephensi(An. stephensi) Liston, the main malaria vector in southern Iran, to WHO recommended insecticides. Methods: Larvae of An. stephensi were collected from t...Objective: To evaluate the susceptibility of Anopheles stephensi(An. stephensi) Liston, the main malaria vector in southern Iran, to WHO recommended insecticides. Methods: Larvae of An. stephensi were collected from three different larval habitats in both urban and rural area of Bandar Abbas city and one rural area in Rudan county southern Iran. WHO standard method was used for evaluation of adult and larval mosquito susceptibility. Bendiocarb, permethrin, lambda-cyhalothrin, deltamethrin as insecticide and temephos and chlorpyriphos as larvicide were used at the diagnostic dosages recommended by WHO. Results: Findings of this study showed all larval populations of An. stephensi were completely susceptible to temephos and candidate for resistance to chlorpyriphos. Adult mosquitoes in rural areas of Bandar Abbas city were resistant to pyrethroid and carbamate insecticides. Conclusion: Comparison of the results of this survey with previous studies indicates that the resistance to pyrethroids and carbamates in this malaria endemic region is increasing. Wide use of pesticides in agriculture is certainly effective in increasing resistance. The inter-sectoral coordination and collaboration in health and agriculture seem to be necessary to manage insecticide resistance in malaria vectors.展开更多
Objective: To determine the susceptibility status of Anopheles maculipennis(An. maculipennis) against the major insecticides used in the health sectors in West Azarbaijan Province, Northwestern Iran.Methods: Unfed 3-5...Objective: To determine the susceptibility status of Anopheles maculipennis(An. maculipennis) against the major insecticides used in the health sectors in West Azarbaijan Province, Northwestern Iran.Methods: Unfed 3-5 days old adult females of An. maculipennis were collected across the West Azarbaijan Province and were subjected to evaluation of their susceptibility following World Health Organization recommended protocol against six insecticides(permethrin, deltamethrin, propoxur, bendiocarb, malathion and dieldrin) belonging to four different classes. Results: In this study, 916 specimens of An. maculipennis were examined against the insecticides which indicated that An. maculipennis was tolerant to permethrin, deltamethrin and dielderin, but displayed resistance against propoxur, bendiocarb and malathion. Conclusions: The pattern of resistance in An. maculipennis could be attributed to the agricultural landscapes, agricultural pesticides used and the exposure of the mosquitoes to insecticides. Logical cooperation is needed between the agriculture and health sectors to ensure the judicious use of pesticides in each sector and the management of probable resistance.展开更多
The sweetpotato whitefly Bemisia tabaci(Hemiptera:Aleyrodidae)is an extremely polyphagous insect pest that causes significant crop losses in Israel and worldwide.B.tabaci is a species complex of which the B and Q b...The sweetpotato whitefly Bemisia tabaci(Hemiptera:Aleyrodidae)is an extremely polyphagous insect pest that causes significant crop losses in Israel and worldwide.B.tabaci is a species complex of which the B and Q biotypes are the most widespread and damaging worldwide.The change in biotype composition and resistance to insecticide in Israel was monitored during the years 2008-2010 to identify patterns in population dynamics that can be correlated with resistance outbreaks.The results show that B biotype populations dominate crops grown in open fields,while Q biotype populations gradually dominate crops grown in protected conditions such as greenhouses and nethouses,where resistance outbreaks usually develop after several insecticide applications.While in previous years,Q biotype populations were widely detected in many regions in Israel,significant domination of the B biotype across populations collected was observed during the year 2010,indicating the instability of the B.tabaci population from one year to another.Reasons for the changing dynamics and the shift in the relative abundance of B.tabaci biotype,and their resistance status,are discussed.展开更多
文摘The use of insecticides remain the most effective vector control approach for mosquito borne diseases like malaria,dengue fever,chikungunya,and Zika virus disease;however,their increasing resistance has complicated the management.Mutations in kdr,ace-1/ace-2,rdl,and nAChR,are involved in target-site mediated resistance and prevent the binding of pyrethroids and dichlorodiph enyltrichloroethane,organophosphorus pesticide,carbamates and cyclodienes,respectively.Here,we review the current knowledge on target-site mediated insecticidal resistance mechanisms in major mosquito vectors and the techniques used to identify these mutations.The results showed that kdr mutations are frequently reported in mosquito species,indicating the overuse of pyrethroid in mosquito control.Report on ace mutations is very limited,primarily detected in Anopheles and Culex,with extremely low detection rate in Aedes,despite the wide application of organophosphates in their control.Notably,reports of rdl mutations and changes in nAChR are rare,which provides an opportunity to exploit these target sites,particularly in the event of disease outbreaks.Among various detection methods such as RFLP,TaqMan,Multiplex PCR and FRET,allele-specific PCR is mostly employed,especially in detecting kdr mutation.However,allele-specific PCR cannot detect novel mutation.As a result,there is an urgent need to develop a scalable,cost-effective tool that can be widely applied especially as these mutations are genetic markers for early detection of insecticide resistance.Robust monitoring methods remain critical to manage insecticide resistance and effective control of mosquito-borne diseases.
文摘Background The cryptic nature of pink bollworm Pectinophora gossypiella(Saunders)larvae enables its reduced vul-nerability to insecticidal control.Further,the development of resistance against Bacillus thuringiensis(Bt)toxins posed a serious threat to transgenic cotton cultivation.This necessitated determining the critical timing of spray applications on the control effectiveness.This study assessed the influence of egg age(freshly laid vs.three-day-old)and the loca-tion of larvae(directly exposed to the insecticide residues on the boll rind vs.burrowed inside the bolls)on insecticide control efficacy.Results The results revealed a significant decrease in the ovicidal activity of tested insecticides with an increase in the age of eggs from one day old to three days old(paired t-test,P<0.05).The larvae directly exposed to the insec-ticide residues on the boll rind were more susceptible(>80%mortality)than the larvae exposed after they had bur-rowed inside the bolls(<49%mortality).The inhibitory effects of tested insecticides on developmental biology were more pronounced in the experiment on pre-larval release insecticide treatment compared with insecticide treatment given post-larval release and entry inside the bolls.Conclusion Egg age influences the insecticide susceptibility,as does the larval location,directly exposed vs bur-rowed inside the bolls.Older eggs and the larvae that had burrowed inside the green bolls of cotton were relatively less susceptible to the insecticide treatments.The toxic effects of insecticides on egg and larval stages were primar-ily ephemeral.These findings are significant for devising a comprehensive strategy for pink bollworm management on a sustainable basis.
文摘Chemical insecticides have been considered as a means to combat crop pests. Although their effectiveness is evident, their impact on the environment is increasingly being discussed. The aim of this study is to determine the agro-ecological potential of a biological insecticide (C<sub>25</sub>H<sub>32</sub>O<sub>12</sub>) based on Aloe barbadensis in a Sahelian context. For this purpose, a completely randomized block experimental design with 3 replications and 4 treatments was set up to experiment with Aloe barbadensis as a bioinsecticide against pests of Abelmoschus esculentus. However, data were collected using an observation and parameter monitoring grid. This includes the cultivation of Abelmoschus esculentus, soil preparation, seeding and watering, plot labeling, preparation of the bioinsecticide (selection and preparation of raw materials, grinding of Aloe barbadensis miller and extraction of the crude bioinsecticide, quantification of treatment doses and dilution, and obtaining the formulated bioinsecticide), plant watering, plant treatment, and finally parameter monitoring. The results obtained reveal that the level of damage is significantly high in the control treatment T0 (63%) compared to the other treatments, with 29% for treatment T1, 7% for T2, and 1% for T3, implying a strong action capability of this insecticide against pests of Abelmoschus esculentus. Therefore, it can be concluded that for a normal growing season of Abelmoschus esculentus, this biological insecticide should be sprayed 12 times. Furthermore, this biological insecticide is unique in that it does not inflict any gastric toxicity on the pests, which gives it the characteristic of being a repellent. It is a biological insecticide whose efficacy period has been tested, with a minimum duration of 21 days. In conclusion, this formulated bioinsecticide based on Aloe barbadensis demonstrates significant efficacy against pests of Abelmoschus esculentus. In the future, we will consider experimenting with its effectiveness against pests of other plants.
文摘Background & Objectives: Epidemics of arboviruses such as Dengue, Chikungunya and Zika have been recorded in recent years indicating that Aedes aegypti and Aedes albopictus are both important and very active vectors in Africa. For vector control, insecticides are on the front line, unfortunately, reported resistance jeopardizes the effectiveness of this strategy. The objective of this review was to determine the geographical distribution and insecticide resistance mechanisms of Ae. aegypti and Ae. Albopictus in Africa. Methods: A systematic review of the literature in scientific databases (PubMed, Google Scholar, ScienceDirect, Hinari) allowed us to identify relevant articles on the geographical distribution of Aedes aegypti, Aedes albopictus and arboviral diseases. On the other hand, studies related to insecticides used in vector control against Aedes, associated resistances and their molecular and metabolic mechanisms. Results: A total of 94 studies met the inclusion criteria for this search. Aedes aegypti is reported in most of Africa, and Aedes albopictus in part. There is a re-emergence and outbreak of Arbovirus epidemics in West and Central Africa. The insecticides used were organochlorines, carbamates, organophosphates and pyrethroids. In Aedes, target site insensitivity and metabolic resistance would be the 2 main mechanisms of resistance to these insecticides. Interpretation & Conclusion: Resistance has been recorded in all four major classes of insecticides recommended by WHO for vector control and eradication. New vector control methods such as the use of plant extracts with larvicidal and adulticidal activities, advanced modern biotechnology techniques, and nanobiotechnology need to be developed.
文摘The efficacy of insecticide-treated nets (ITNs) is increasingly compromised by the prevalence of malaria vectors resistant to pyrethroids. In response to this issue, a new generation of ITNs has been developed that incorporate synergistic components, such as piperonyl butoxide (PBO). The purpose of this study is to provide entomological evidence for the efficacy of a PBO-based ITN brand at the village level, serving as a basis for decision-making before large-scale net deployment. During the high malaria transmission period, ITNs were distributed in each group and vector sampling was conducted biweekly in selected households. Bionomic data were collected to assess the resistance of wild An. gambiae populations to various chemical insecticides. There was a significant disparity in total An. gambiae sl. collected between the ITN arms, the intervention arm (ITN arms), and the control arm (P = 0.003). An. coluzzi was identified as the predominant species in the study area, as confirmed by PCR analysis. Analysis of the blood-feeding inhibition rate revealed that 100% permethrin + PBO ITN exhibited significantly greater inhibition than 66.81% permethrin only ITN. According to the log-time probit regression analysis, permethrin exhibited a knockdown time of 256 min without synergists, while it decreased to 139 min (P = 0.001) when pre-exposed to PBO. The evidence from this trial supports the use of PBO ITNs over standard ITNs for pyrethroids to combat pyrethroid resistance and improve protection against malaria for both individuals and communities, particularly in areas with high pyrethroid resistance.
基金Supported by Pesticide Innovation and Highly Efficient Implementation Technology of Special Foundation for Anhui Talents Development(13C1109)~~
文摘[Objective] The aim was to determine control effects of the 6 insecticides and recommended the optimal doses. [Method] In 2014, the control effects of sophocarpidine, pymetrozine, beta-cypermethrin, acetamiprid, imidacloprid, and chlor- pyrifos on wheat aphids were tested, and every pesticide was designed with three doses in Shou County, Anhui Province, to explore the significance of differences on control effects. [Result] The results showed that the control effects of the 6 insecti- cides were satisfied, and the insecticides were safe on wheat. [Conclusion] During initial diseasing stage of aphid, it is recommended to use sophocarpidine soluble concentrate (1.5%), pymetrozine water dispersible granule (50%), imidacloprid wet- table powder (25%), and acetamiprid wettable powder (5%), and chlorpyrifos missi- ble oil (40%), cypermethrin missible oil (4.5%) and imidacloprid wettable powder (25%) can be applied in peak-diseasing stage.
文摘The resistance of field populations of Plutella xylostella, from the three vegetable producing areas (Nianyuxu Town of Yueyang City, Canggang Town of Changde City and Shatou Town of Yiyang City) in northern Hunan, to seven insecticides was determined using leaf dipping method in door. The results showed that Plutella xylostella showed an extremely high-level resistance to beta-cypermethrin (resistance ratio, RR=257.13), a high-level resistance to abamectin (RR=135.15) and indoxacarb (RR=103.08) and a moderate-level resistance to chlorfenapyr and emamectin benzoate. But Plutella xylostella is relatively sensitive to chlorantraniliprole and Bacillus thuringiensis (Bt). Therefore, the prevention of Plutella xylostella in northern Hunan should focus on the alternative use of chlorfenapyr, emamectin benzoate, chlorantraniliprole and Bacillus thuringiensis and avoid the use of beta-cypermethrin so as to delay the generation and development of resistance to insecticides in Plutella xylostella.
文摘[Objective] The aim was to select insecticides effective in contrlling Pseudaulacaspis pentagona Infecting Pitaya. [Method] Efficacy effects of 11 insecticides in 22 concentrations were performed on Pseudaulacaspis pentagona Infecting Pitaya. [Result] When the insecticides were sprayed after 14 d, the treatment group with 22.4% spirotetramat SC at two concentrations proved the best, with control effects at 95.24% and 92.05%, followed by Nurelle at two concentrations, with control effects at 90.86% and 89.19%, and the control effects of chlorpyrifos (x2 000) was the poorest at only 67.08%. Therefore, it is feasible to make use of 22.4% spirotetramat SC, chlorpyrifos EC and Nurelle EC alternatively in controlling Pseudaulacaspis pentagona in case of pesticide resistance. [Conclusion] The research provided references for scientific use of insecticides in controlling Pseudaulacaspis pentagona Infecting Pitaya.
文摘Luseweilei is an easily-bursted microcapsule insecticide. A test of effectiveness of the insecticide to control the larvae of Dendrolimus superans T. was carried out in larch forest in Baoan Forest Farm of Nehe City, Heilongjiang Province, in April 2001. The solutions of different concentrations (1:150, 1:250, 1:350, and 1:450 Luseweilei : water) were sprayed on the larch trunk before the overwintering larvae climbing on trees and the spraying lengths (height) designed were 1.0, 2.5, and 3.5 m high from ground. The control result showed that spraying 150-, 250-, and 350-fold solutions of the insecticide all produced a good control result, with a mortality rate of 97%, but the 450-fold solution only produced 70% mortality. It is concluded that this insecticide can be used as a kind of good insecticide to control the overwintering larvae of D. superans in spring. Spraying 350-fold solution of easy-burst microcapsule insecticide and one meter spraying length are recommended for the future application..
基金the National Natural Science Foundation of China (No.30600082)the Australian Research Council (ARC) International Linkage Fellowship (No.LX0560210).
文摘Cucumber (Cucumis sativus) is one of the most widely used vegetable in the world,and different pesticides have been extensively used for controlling the insects and disease pathogens of this plant.However,little is known about how the pesticides affect the microbial community in cucumber phyllosphere.This study was the first attempt to assess the impact of pyrethroid insecticide cyperemethrin on the microbial communities of cucumber phyllosphere using biochemical and genetic approaches.Phospholipid fatty ac...
基金supported by the China Agriculture Research System(CARS-01-17)the National Key Research&Development Plan of China(Grant No.2016YFD0200804)+1 种基金Zhejiang Provincial Key Research&Development Plan(Grant No.2015C02014)State Key Laboratory Breeding Base for Zhejiang Sustainable Pest Control(Grant No.2010DS700124ZZ1601)
文摘Chemical pesticides play crucial roles in the management of crop diseases and pests. However, excessive and irrational use of pesticides has become a major concern and obstacle to sustainable agriculture. As a result, the quality and security of agricultural products are reduced, and the ecological and environmental integrities are threatened. Recently, environment-friendly pest management measures have been introduced and adopted to manage rice insect pests and reduce the use of insecticides. This paper reviewed the advancements in development and application of non-chemical technologies for insect pest management during rice production in China.
基金supported by the National Key Research and Development Program of China(2019YFD0300101)the Central Public-interest Scientific Institution Basal Research Fund,China(CAAS-ZDRW202007)。
文摘Fall armyworm has invaded China and colonized its populations in tropical and sub-tropical regions of South China since December 2018.Chemical spray has been widely used to control the pest,which shall lead to resistance evolution.In this research,we collected five populations of the pest from Yunnan,Hainan,Tibet,and Fujian of China,and tested their susceptibilities to pyrethroid,organophosphorus,oxadiazine,diamide,antibiotics and other types of insecticides(14 insecticides totally)in the laboratory.Based on the susceptible baseline published from the previous studies,the resistance ratio was 615-1068-fold to chlorpyrifos,60-388-fold to spinosad,26-317-fold to lambda-cyhalothrin,13-29-fold to malathion,9-33-fold to fenvalerate,8-20-fold to deltamethrin,3-8-fold to emamectin benzoate and 1-2-fold to chlorantraniliprole,respectively.The median lethal concentration(LC_(50))of other six insecticides without the susceptible baselines was 148.27-220.96μgmL^(-1) for beta-cypermethrin,87.03-128.43μgmL^(-1) for chlorfenapyr,16.35-99.67μgmL^(-1) for indoxacarb,10.55-51.01μgmL^(-1) for phoxim,7.08-8.78μgmL^(-1) for M-EBI(the mixed insecticide of emamectin benzoate and indoxcarb)and 1.49-4.64μg mL^(-1) for cyantraniliprole.This study can be helpful for chemical control as well as for resistance monitoring and management of the pest in China.
基金supported by the China Agriculture Research System(CARS-02)the Public Welfare Project from Ministry of Agriculture of the People’s Republic of China(201203025)
文摘Distribution of horizontal boom produced droplets downwards into maize canopies at flowering period and its effects on the efficacies of emamectin benzoate, lambda-cyhalothrin and chlorantraniliprole against the second generation of Asian corn borer (ACB) larvae and their toxicity to spiders were studied. When insecticides were sprayed downwards into the maize canopies, randomly filtering out droplets by upper leaves led to great variations of droplet coverage and density within the canopies. Consequently, the efficacies of lambda-cyhalothrin and emamectin benzoate against ACB larvae were decreased because of randomly filtering out droplets by upper leaves. But field investigation showed that lambda-cyhalothrin was extremely toxic to hunting spiders, Xysticus ephippiatus, and not suitable to IPM programs in regulation of the second generation of ACB. Therefore, randomly filtering out droplets by upper leaves decreased lambda-cyhalothrin's efficacy against ACB larvae, but did little to decrease its toxicity to X. ephippiatus. Amamectin benzoate can reduce the populations of X. ephippiatus by 58.1-61.4%, but the populations can recover at the end of the experiment. Chlorantraniliprole was relatively safe to X. ephippiatus. It only reduced the populations of X. ephippiatus by 22.3-33.0%, and the populations can totally recover 9 d after application.
基金the National Natural Science Foundation of China (30160050).
文摘The combinative rate measurement of (3-[I125] iodotyrosyl) α-bungarotoxin was applied in the analysis of the relation between nerve acetylcholine receptor and three types of insecticide resistance in diamondback moth, Plutella xylostella (L.). In the dimehypo-resistant strain and in the cartap-resistant strain, the nerve acetylcholine receptor showed the remarkable insensitivity to dimehypo and cartap, of which the binding rate to ligand was approximately 66 and 60%, respectively, of the susceptible strain. The sensitivity to deltamethrin in the deltamethrin-resistant strain did not show visible change. These results indicated that the decline in the sensitivity of nerve acetylcholine receptor to insecticide might be a potential mechanism to nereistoxin insecticides resistance in the diamondback moth.
基金supported by the Special Fund for Agroscientific Research in the Public Interest of China (201403031)the Research Project Program of Agricultural Science and Technology innovation Transformation in Shaanxi Province, China
文摘Resistance of five field populations of Mythimna separata(Walker) collected from Shaanxi and Shanxi provinces of China to six different insecticides was evaluated by leaf dip method in the laboratory. The results showed that all populations were relatively sensitive to emamectin benzoate with a resistance ratio(RR) of 0.583–1.583 folds. All populations showed susceptible or low level resistance to chlorantraniliprole and beta-cypermethrin. Compared with a relatively susceptible strain of M. separata, the resistance level of the whole populations ranged from susceptible to moderate to chlorpyrifos and lambda-cyhalothrin, moderate to high to phoxim(RR=19.367–70.100) except for population from Sanyuan County(RR=2.567). Pair-wise correlation analysis among different insecticides indicated that chlorpyrifos has a significantly positive and significant correlation with emamectin benzoate. Chlorantraniliprole didn't have significant correlation with emamectin benzoate, chlorpyrifos and phoxim. Therefore, emamectin benzoate, chlorantraniliprole and beta-cypermethrin are recommended to control oriental armyworm. Meanwhile, to postpone the occurrence and development of insecticide resistance in Shaanxi and Shanxi provinces, alternative and rotational application of insecticides between chlorantraniliprole and emamectin benzoate or chlorpyrifos is necessary.
基金Supported by the International Center of Insect Physiology and Ecology(ICIPE) or Bio-vision Foundation Ethiopia(Grant No.BV-HH-03)
文摘Objective:To elucidate the larvicidal potency of neem, chinaberry and Bacillus thuringiensis israelensis(Bti) to larvae of Anopheles arabiensis under semi-field condition and adult susceptibility/resistance to the conventionally used insecticides in Tolay,Southwestern Ethiopia.Methods: Wild collected 3rd and 4th stage larvae were exposed to neem, and chinaberry seed powder dissolved in water and Bti in artificial containers at three treatment levels:0.2, 0.1 and 0.05 g/m^2 and controls were free of treatments. Larval and pupal mortalities were monitored daily and residual activities were determined. The experiments were replicated three times. The World Health Organization tube test for all classes of insecticides was conducted on adult Anopheles arabiensis reared from field collected larvae and pupae. Data were analyzed using STATA software version 11.Results: In the first application, neem powder caused 88.9%, 87.9% and 79.4% larval and pupal mortality at 0.2, 0.1 and 0.05 g/m^2 after 4.3, 6.0 and 5.7 days, respectively. The corresponding killing effect of chinaberry was 80.3%, 62.1% and 30.3% after 7.0, 7.7 and 8.3days respectively. Bti at all treatments killed 100% after 24 h except 2.7 days for 0.05 g/m^2.Adult mosquitoes were susceptible only for fenitrothion and pirimiphos-methyl with 100%mortality while resistant to deltamethrin, alpha-cypermethrin, etofenprox and dichlorodiphenyl-tricgloroethane with only 9.0%, 3.0%, 5.1% and 2.0% mortalities respectively.Conclusions: Neem, chinaberry and Bti showed potent larvicidal and pupicidal activities. However, in the area, high level of mosquito resistance to pyrethroids and dichlorodiphenyl-tricgloroethane was seen which will pose serious challenge to vector control in the future. Therefore, using integrated approach including these botanical larvicides is warranted to manage insecticide resistance.
文摘Susceptibility to insecticides was investigated by collecting field populations of brown planthopper from different locations of southern Karnataka, India (Gangavati, Kathalagere, Kollegala, Soraba and Mandya). All the field populations differed in their susceptibility to insecticides. In general, Soraba and Mandya populations were more susceptible to insecticides compared to Gangavati and Kathalagere populations. The resistance ratios varied greatly among the populations viz., chlorpyriphos (1.13- to 16.82-fold), imidacloprid (0.53- to 13.50-fold), acephate (1.34- to 5.32-fold), fipronil (1.13- to 4.06-fold), thiamethoxam (1.01- to 2.19-fold), clothianidin (1.92- to 4.86-fold), dinotefuran (0.82- to 2.22- fold), buprofezin (1.06- to 5.43-fold) and carbofuran (0.41- to 2.17-fold). The populations from Gangavati Kathalagere and Kollegala exhibited higher resistance to some of the old insecticides and low resistance to new molecules.
基金financially supported by deputy for research,Tehran University of Medical Sciences,Project No.36251
文摘Objective: To evaluate the susceptibility of Anopheles stephensi(An. stephensi) Liston, the main malaria vector in southern Iran, to WHO recommended insecticides. Methods: Larvae of An. stephensi were collected from three different larval habitats in both urban and rural area of Bandar Abbas city and one rural area in Rudan county southern Iran. WHO standard method was used for evaluation of adult and larval mosquito susceptibility. Bendiocarb, permethrin, lambda-cyhalothrin, deltamethrin as insecticide and temephos and chlorpyriphos as larvicide were used at the diagnostic dosages recommended by WHO. Results: Findings of this study showed all larval populations of An. stephensi were completely susceptible to temephos and candidate for resistance to chlorpyriphos. Adult mosquitoes in rural areas of Bandar Abbas city were resistant to pyrethroid and carbamate insecticides. Conclusion: Comparison of the results of this survey with previous studies indicates that the resistance to pyrethroids and carbamates in this malaria endemic region is increasing. Wide use of pesticides in agriculture is certainly effective in increasing resistance. The inter-sectoral coordination and collaboration in health and agriculture seem to be necessary to manage insecticide resistance in malaria vectors.
基金Supported by Urmia University of Medical Sciences,Urmia,Iran(Project No.1239)
文摘Objective: To determine the susceptibility status of Anopheles maculipennis(An. maculipennis) against the major insecticides used in the health sectors in West Azarbaijan Province, Northwestern Iran.Methods: Unfed 3-5 days old adult females of An. maculipennis were collected across the West Azarbaijan Province and were subjected to evaluation of their susceptibility following World Health Organization recommended protocol against six insecticides(permethrin, deltamethrin, propoxur, bendiocarb, malathion and dieldrin) belonging to four different classes. Results: In this study, 916 specimens of An. maculipennis were examined against the insecticides which indicated that An. maculipennis was tolerant to permethrin, deltamethrin and dielderin, but displayed resistance against propoxur, bendiocarb and malathion. Conclusions: The pattern of resistance in An. maculipennis could be attributed to the agricultural landscapes, agricultural pesticides used and the exposure of the mosquitoes to insecticides. Logical cooperation is needed between the agriculture and health sectors to ensure the judicious use of pesticides in each sector and the management of probable resistance.
基金This is contribution No.503/11 from the Agricultural Research Organization,the Volcani Center,Bet Dagan,Israel
文摘The sweetpotato whitefly Bemisia tabaci(Hemiptera:Aleyrodidae)is an extremely polyphagous insect pest that causes significant crop losses in Israel and worldwide.B.tabaci is a species complex of which the B and Q biotypes are the most widespread and damaging worldwide.The change in biotype composition and resistance to insecticide in Israel was monitored during the years 2008-2010 to identify patterns in population dynamics that can be correlated with resistance outbreaks.The results show that B biotype populations dominate crops grown in open fields,while Q biotype populations gradually dominate crops grown in protected conditions such as greenhouses and nethouses,where resistance outbreaks usually develop after several insecticide applications.While in previous years,Q biotype populations were widely detected in many regions in Israel,significant domination of the B biotype across populations collected was observed during the year 2010,indicating the instability of the B.tabaci population from one year to another.Reasons for the changing dynamics and the shift in the relative abundance of B.tabaci biotype,and their resistance status,are discussed.