Three-dimensional ocean subsurface temperature and salinity structures(OST/OSS)in the South China Sea(SCS)play crucial roles in oceanic climate research and disaster mitigation.Traditionally,real-time OST and OSS are ...Three-dimensional ocean subsurface temperature and salinity structures(OST/OSS)in the South China Sea(SCS)play crucial roles in oceanic climate research and disaster mitigation.Traditionally,real-time OST and OSS are mainly obtained through in-situ ocean observations and simulation by ocean circulation models,which are usually challenging and costly.Recently,dynamical,statistical,or machine learning models have been proposed to invert the OST/OSS from sea surface information;however,these models mainly focused on the inversion of monthly OST and OSS.To address this issue,we apply clustering algorithms and employ a stacking strategy to ensemble three models(XGBoost,Random Forest,and LightGBM)to invert the real-time OST/OSS based on satellite-derived data and the Argo dataset.Subsequently,a fusion of temperature and salinity is employed to reconstruct OST and OSS.In the validation dataset,the depth-averaged Correlation(Corr)of the estimated OST(OSS)is 0.919(0.83),and the average Root-Mean-Square Error(RMSE)is0.639°C(0.087 psu),with a depth-averaged coefficient of determination(R~2)of 0.84(0.68).Notably,at the thermocline where the base models exhibit their maximum error,the stacking-based fusion model exhibited significant performance enhancement,with a maximum enhancement in OST and OSS inversion exceeding 10%.We further found that the estimated OST and OSS exhibit good agreement with the HYbrid Coordinate Ocean Model(HYCOM)data and BOA_Argo dataset during the passage of a mesoscale eddy.This study shows that the proposed model can effectively invert the real-time OST and OSS,potentially enhancing the understanding of multi-scale oceanic processes in the SCS.展开更多
Implantable temperature sensors are revolutionizing physiological monitoring and playing a crucial role in diagnostics,therapeutics,and life sciences research.This review classifies the materials used in these sensors...Implantable temperature sensors are revolutionizing physiological monitoring and playing a crucial role in diagnostics,therapeutics,and life sciences research.This review classifies the materials used in these sensors into three categories:metal-based,inorganic semiconductor,and organic semiconductor materials.Metal-based materials are widely used in medical and industrial applications due to their linearity,stability,and reliability.Inorganic semiconductors provide rapid response times and high miniaturization potential,making them promising for biomedical and environmental monitoring.Organic semiconductors offer high sensitivity and ease of processing,enabling the development of flexible and stretchable sensors.This review analyzes recent studies for each material type,covering design principles,performance characteristics,and applications,highlighting key advantages and challenges regarding miniaturization,sensitivity,response time,and biocompatibility.Furthermore,critical performance parameters of implantable temperature sensors based on different material types are summarized,providing valuable references for future sensor design and optimization.The future development of implantable temperature sensors is discussed,focusing on improving biocompatibility,long-term stability,and multifunctional integration.These advancements are expected to expand the application potential of implantable sensors in telemedicine and dynamic physiological monitoring.展开更多
Low temperature(LT)in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.Diverse analyses were performed to investigate the mechanism underlying the response of w...Low temperature(LT)in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.Diverse analyses were performed to investigate the mechanism underlying the response of wheat grain development to LT stress during booting.These included morphological observation,measurements of starch synthase activity,and determination of amylose and amylopectin content of wheat grain after exposure to treatment with LT during booting.Additionally,proteomic analysis was performed using tandem mass tags(TMT).Results showed that the plumpness of wheat grains decreased after LT stress.Moreover,the activities of sucrose synthase(SuS,EC 2.4.1.13)and ADP-glucose pyrophosphorylase(AGPase,EC 2.7.7.27)exhibited a significant reduction,leading to a significant reduction in the contents of amylose and amylopectin.A total of 509 differentially expressed proteins(DEPs)were identified by proteomics analysis.The Gene Ontology(GO)enrichment analysis showed that the protein difference multiple in the nutritional repository activity was the largest among the molecular functions,and the up-regulated seed storage protein(ssP)played an active role in the response of grains to LT stress and subsequent damage.The Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis showed that LT stress reduced the expression of DEPs such as sucrose phosphate synthase(SPS),glucose-1-phosphate adenylyltransferase(glgC),andβ-fructofuranosidase(FFase)in sucrose and starch metabolic pathways,thus affecting the synthesis of grain starch.In addition,many heat shock proteins(HsPs)were found in the protein processing in endoplasmic reticulum pathways,which can resist some damage caused by LT stress.These findings provide a new theoretical foundation for elucidating the underlying mechanism governing wheat yield developmentafterexposuretoLTstress inspring.展开更多
The roles of diurnal temperature in providing heat accumulation and chilling requirements for vegetation spring phenology differ.Although previous studies have established a stronger correlation between leaf onset and...The roles of diurnal temperature in providing heat accumulation and chilling requirements for vegetation spring phenology differ.Although previous studies have established a stronger correlation between leaf onset and diurnal temperature than between leaf onset and average temperature,current research on modeling spring phenology based on diurnal temperature indicators remains limited.In this study,we confirmed the start of the growing season(SOS)sensitivity to diurnal temperature and average temperature in boreal forest.The estimation of SOS was carried out by employing K-Nearest Neighbor Regression(KNR-TDN)model,Random Forest Regres-sion(RFR-TDN)model,eXtreme Gradient Boosting(XGB-TDN)model and Light Gradient Boosting Machine model(LightGBM-TDN)driven by diurnal temperature indicators during 1982-2015,and the SOS was projected from 2015 to 2100 based on the Coupled Model Intercomparison Project Phase 6(CMIP6)climate scenario datasets.The sensitivity of boreal forest SOS to daytime temperature is greater than that to average temperature and nighttime temperature.The LightGBM-TDN model perform best across all vegetation types,exhibiting the lowest RMSE and bias compared to the KNR-TDN model,RFR-TDN model and XGB-TDN model.By incorporating diurn-al temperature indicators instead of relying only on average temperature indicators to simulate spring phenology,an improvement in the accuracy of the model is achieved.Furthermore,the preseason accumulated daytime temperature,daytime temperature and snow cover end date emerged as significant drivers of the SOS simulation in the study area.The simulation results based on LightGBM-TDN model exhibit a trend of advancing SOS followed by stabilization under future climate scenarios.This study underscores the potential of diurn-al temperature indicators as a viable alternative to average temperature indicators in driving spring phenology models,offering a prom-ising new method for simulating spring phenology.展开更多
Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy.With this approach,feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphas...Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy.With this approach,feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphaseflow within the furnace.Understanding the flow structure and temperature distribution in this setup is crucial foroptimizing production.In this study,gas-liquid interactions,and temperature profiles under varying air-injectionconditions are examined by means of numerical simulation for a 3.2 m×20 m furnace.The results indicate that thehigh-velocity regions are essentially distributed near the lance within the reaction region and the flue gas outlet,while low-velocity regions are located close to the furnace walls on both side of the reaction region.Dead regionsappear in the sedimentation region,with gas velocities surpassing those of the molten phase.As the injection rateincreases from 0.50 to 0.80 Nm3/s,the stabilization time of the average liquid surface velocity decreases from 2.6 sto 1.9 s,exhibiting a similar trend to the gas holdup.During stabilization,the average liquid surface velocity risesfrom 0.505 to 0.702 m/s.The average turbulent kinetic energy(TKE)of the fluid in the molten bath increases from0.095 to 0.162 m^(2)/s^(2).The proportion of the area distribution with TKE greater than 0.10 m^(2)/s^(2) and the gas holdupat steady state both rise with an increase in the injection quantity.The maximum splashing height of the melt growsfrom approximately 0.756 to 1.154 m,with the affected area expanding from 14.239 to 20.498 m^(2).Under differentworking conditions with varying injection quantities,the average temperature changes in melt zone and flue gaszone of the furnace are small.The temperature in the melt and in the flue-gas zone spans the interval 1200℃–1257℃,and 1073℃–1121℃,respectively.The temperature distribution of the melt and flue gas reveals a patterncharacterized by elevated temperatures in the reaction zone,gradually transitioning to lower temperatures in thesedimentation region.展开更多
The influence of initial groove angle on strain rate inside and outside groove of Ti6Al4V alloy was investigated.Based on the evolution of strain rate inside and outside groove,the effect of strain rate difference on ...The influence of initial groove angle on strain rate inside and outside groove of Ti6Al4V alloy was investigated.Based on the evolution of strain rate inside and outside groove,the effect of strain rate difference on the evolution of normal stress and effective stress inside and outside groove was also analyzed.The results show that when linear loading path changes from uniaxial tension to equi-biaxial tension,the initial groove angle plays a weaker role in the evolution of strain rate in the M-K model.Due to the constraint of force equilibrium between inside and outside groove,the strain rate difference makes the normal stress inside groove firstly decrease and then increase during calculation,which makes the prediction algorithm of forming limit convergent at elevated temperature.The decrease of normal stress inside groove is mainly caused by high temperature softening effect and the rotation of groove,while the increase of normal stress inside groove is mainly due to strain rate hardening effect.展开更多
The experiment was mainly used to study the effect of insect-proof net mulching cultivation technology on the temperature and humidity of the greenhouse and the spring shoot growth of citrus Shatangju. The results sho...The experiment was mainly used to study the effect of insect-proof net mulching cultivation technology on the temperature and humidity of the greenhouse and the spring shoot growth of citrus Shatangju. The results showed that the 40-mesh translucent insect-proof net had a positive effect on the spring shoot growth of Shatangju in the spring from January to April. In the meantime,according to the change of the temperature and humidity inside and outside the insect-proof net and the change of quantity of Aleyrodidae,Tetranychidae and Phyllocnisidae,it was found that the role of insect-proof net in enhancing the spring shoot growth of Shatangju was possibly achieved by the regulation of citrus pests and the temperature and humidity inside the net.展开更多
A statistical analysis on the simultaneous observation data of the temperature inside and outside the themometer shelter in Changsha during summer of 2011 and 2012 was carried out. The results show that the temperatur...A statistical analysis on the simultaneous observation data of the temperature inside and outside the themometer shelter in Changsha during summer of 2011 and 2012 was carried out. The results show that the temperature outside the themometer shelter is higher( lower) than that inside the themometer shelter in the daytime( nighttime). However,there exists a similar variation trend for the average temperature and the extremely maximum temperature inside and outside the themometer shelter in summer. The average temperature and the extremely maximum temperature outside the themometer shelter are higher than that inside the themometer shelter. Furthermore,there exists a difference between the temperatures inside and outside the themometer shelter during different weather conditions. The difference of average temperature reaches 1. 2 ℃ in rainy day,2. 8 ℃ in cloudy day and 3. 1 ℃ in sunny day,and the extremely maximum temperature difference reaches 6. 4 ℃. Especially for the days of high temperature ≥35 ℃,there is 61 high temperature days inside the themometer shelter,while there is 125 high temperature days inside the themometer shelter during 2011- 2012. Furthermore,the extremely maximum temperatures inside and outside the themometer shelter are 38. 9 and42. 0 ℃ respectively. Rainfall and showery rain are the most effective ways to relieve the high temperature in summer. Therefore,the difference between the temperatures inside and outside the themometer shelter should be taken into account in the high temperature forecast and public meteorological service.展开更多
In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming ...In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming has become one of the hottest topics in the scientific community and is closely connected to the future development of human society.We analyzed the monthly varying global mean surface temperature(GMST)in 2023 and found that the globe,the land,and the oceans in 2023 all exhibit extraordinary warming,which is distinct from any previous year in recorded history.Based on the GMST statistical ensemble prediction model developed at the Institute of Atmospheric Physics,the GMST in 2023 is predicted to be 1.41℃±0.07℃,which will certainly surpass that in 2016 as the warmest year since 1850,and is approaching the 1.5℃ global warming threshold.Compared to 2022,the GMST in 2023 will increase by 0.24℃,with 88%of the increment contributed by the annual variability as mostly affected by El Niño.Moreover,the multidecadal variability related to the Atlantic Multidecadal Oscillation(AMO)in 2023 also provided an important warming background for sparking the GMST rise.As a result,the GMST in 2023 is projected to be 1.15℃±0.07℃,with only a 0.02℃ increment,if the effects of natural variability—including El Niño and the AMO—are eliminated and only the global warming trend is considered.展开更多
To evaluate the effects of solar greenhouse with different structure and CO2 enrichment on illumination and temperature performance of greenhouse and cucumber growth and development in the central region of Inner Mong...To evaluate the effects of solar greenhouse with different structure and CO2 enrichment on illumination and temperature performance of greenhouse and cucumber growth and development in the central region of Inner Mongolia, the research used traditional solar greenhouse (A) and blanket-inside solar greenhouse(B), and set 4 treatments: AE (traditional solar greenhouse A with CO2 enrichment), AN (traditional solar greenhouse A without CO2 enrichment), BE (blanket-inside solar greenhouse B with CO2 enrichment) and BN (blanket-inside solar greenhouse B without CO2 enrichment), to explore the influence of cucumber growth, photosynthetic property, quality and yield in different structure solar greenhouses with CO2 enrichment. The results showed that the illumination and temperature in blanket-inside solar greenhouse was superior to traditional solar greenhouse, and the average light intensity in blanket-inside solar greenhouse increased by 21.05%, compared with traditional solar greenhouse. Under the condition of same greenhouse structure, stem height ,average stem diameter, contents of soluble sugar, vitamin C, net photosynthetic rate and yield showed any significant difference between the treatments with CO2 enrichment or not. Under the condition of same CO2 concentration, BE cucumber average stem height, average stem diameter, contents of soluble sugar, net photosynthetic rate and yield in BE was higher than which in AE. Therefore, the optimization in structure of blanket-inside solar greenhouse remarkably improved illumination and temperature property, combining with CO2 enrichment as application technology, there was crucial significance to promote the greenhouse performance and improve the efficiency of greenhouse vegetable production.展开更多
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi...Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.展开更多
Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability o...Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current.展开更多
Multistage heat treatment involving quenching(Q),lamellarizing(L),and tempering(T)is applied to marine 10Ni5CrMoV steel.The microstructure and mechanical properties were studied by multiscale characterizations,and the...Multistage heat treatment involving quenching(Q),lamellarizing(L),and tempering(T)is applied to marine 10Ni5CrMoV steel.The microstructure and mechanical properties were studied by multiscale characterizations,and the kinetics of reverse austenite transformation,strain hardening behavior,and toughening mechanism were further investigated.The lamellarized specimens possess low yield strength but high toughness,especially cryogenic toughness.Lamellarization leads to the development of film-like reversed austenite at the martensite block and lath boundaries,refining the martensite structure and lowering the equivalent grain size.Kinetic analysis of austenite reversion based on the JMAK model shows that the isothermal transformation is dominated by the growth of reversed austenite,and the maximum transformation of reversed austenite is reached at the peak temperature(750℃).The strain hardening behavior based on the modified Crussard-Jaoul analysis indicates that the reversed austenite obtained from lamellarization reduces the proportion of martensite,significantly hindering crack propagation via martensitic transformation during the deformation.As a consequence,the QLT specimens exhibit high machinability and low yield strength.Compared with the QT specimen,the ductile-brittle transition temperature of the QLT specimens decreases from-116 to-130℃due to the low equivalent grain size and reversed austenite,which increases the cleavage force required for crack propagation and absorbs the energy of external load,respectively.This work provides an idea to improve the cryogenic toughness of marine 10Ni5CrMoV steel and lays a theoretical foundation for its industrial application and comprehensive performance improvement.展开更多
BACKGROUND Cardiovascular disease(CVD)is a leading cause of morbidity and mortality worldwide,the global burden of which is rising.It is still unclear the extent to which prediabetes contributes to the risk of CVD in ...BACKGROUND Cardiovascular disease(CVD)is a leading cause of morbidity and mortality worldwide,the global burden of which is rising.It is still unclear the extent to which prediabetes contributes to the risk of CVD in various age brackets among adults.To develop a focused screening plan and treatment for Chinese adults with prediabetes,it is crucial to identify variations in the connection between prediabetes and the risk of CVD based on age.AIM To examine the clinical features of prediabetes and identify risk factors for CVD in different age groups in China.METHODS The cross-sectional study involved a total of 46239 participants from June 2007 through May 2008.A thorough evaluation was conducted.Individuals with prediabetes were categorized into two groups based on age.Chinese atherosclerotic CVD risk prediction model was employed to evaluate the risk of developing CVD over 10 years.Random forest was established in both age groups.SHapley Additive exPlanation method prioritized the importance of features from the perspective of assessment contribution.RESULTS In total,6948 people were diagnosed with prediabetes in this study.In prediabetes,prevalences of CVD were 5(0.29%)in the younger group and 148(2.85%)in the older group.Overall,11.11%of the younger group and 29.59% of the older group were intermediate/high-risk of CVD for prediabetes without CVD based on the Prediction for ASCVD Risk in China equation in ten years.In the younger age group,the 10-year risk of CVD was found to be more closely linked to family history of CVD rather than lifestyle,whereas in the older age group,resident status was more closely linked.CONCLUSION The susceptibility to CVD is age-specific in newly diagnosed prediabetes.It is necessary to develop targeted approaches for the prevention and management of CVD in adults across various age brackets.展开更多
Tree peony(Paeonia suffruticosa Andrews)is a well-known ornamental plant with high economic value,but the short fluorescence is a key obstacle to its ornamental value and industry development.High temperature accelera...Tree peony(Paeonia suffruticosa Andrews)is a well-known ornamental plant with high economic value,but the short fluorescence is a key obstacle to its ornamental value and industry development.High temperature accelerates flower senescence and abscission,but the associated mechanisms are poorly understood.In this study,the tandem mass tag(TMT)proteome and label-free quantitative ubiquitome from tree peony cut flowers treated with 20℃for 0 h(RT0),20℃or 28℃for 60 h(RT60 or HT60)were examined based on morphological observation,respectively.Totally,6970 proteins and 1545 lysine ubiquitinated(Kub)sites in 844 proteins were identified.Hydrophilic residues(such as glutamate and aspartate)neighboring the Kub sites were in preference,and 36.01%of the Kub sites were located on the protein surface.The differentially expressed proteins(DEPs)and Kub-DEPs in HT60 vs RT60 were mainly enriched in ribosomal protein,protein biosynthesis,secondary metabolites biosynthesis,flavonoid metabolism,carbohydrate catabolism,and auxin biosynthesis and signaling revealed by GO and KEGG analysis,accompanying the increase of endogenous abscisic acid(ABA)accumulation and decrease of endogenous indoleacetic acid(IAA)level.Additionally,the expression patterns of six enzymes(SAMS,ACO,YUC,CHS,ANS and PFK)putatively with Kub modifications were analyzed by proteome and real-time quantitative RT-PCR.The cell-free degradation assays showed PsSAMS and PsACO proteins could be degraded via the 26 S proteasome system in tree peony flowers.Finally,a working model was proposed for the acceleration of flower senescence and abscission by high temperature.In summary,all results contributed to understanding the mechanism of flower senescence induced by high temperature and prolonging fluorescence in tree peony.展开更多
Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to t...Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.展开更多
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo...Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.展开更多
Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear...Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.展开更多
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac...Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.展开更多
Grafting is an effective technique for increasing the resistance of vegetables to biotic and abiotic stresses.It has been widely applied to produce solanaceous and melon vegetables.Temperature is an important external...Grafting is an effective technique for increasing the resistance of vegetables to biotic and abiotic stresses.It has been widely applied to produce solanaceous and melon vegetables.Temperature is an important external factor affecting graft formation.However,the molecular mechanism by which external ambient temperature affects tomato graft formation remains unclear.In this study,we demonstrated that elevating ambient temperature during grafting to 35℃ for more than 24 h after grafting accelerated vascular reconnection.We generated self-or heterografted combinations between phyB1B2 and pif4 loss-of-function mutant and wild-type plants,and were mutants unresponsive to graft formation at elevated ambient temperature.In addition,elevated ambient temperature induced SlPIF4 expression during grafting.SlPIF4 directly binds the promoters of auxin biosynthesis genes SlYUCCAs and activates their expression.Further investigation revealed auxin accumulation in the graft junction under elevated ambient temperature.The results illuminate the mechanism by which the PHYB-PIF4-auxin module promotes tomato graft formation in response to elevated ambient temperature.展开更多
基金jointly supported by the National Key Research and Development Program of China(2022YFC3104304)the National Natural Science Foundation of China(Grant No.41876011)+1 种基金the 2022 Research Program of Sanya Yazhou Bay Science and Technology City(SKJC-2022-01-001)the Hainan Province Science and Technology Special Fund(ZDYF2021SHFZ265)。
文摘Three-dimensional ocean subsurface temperature and salinity structures(OST/OSS)in the South China Sea(SCS)play crucial roles in oceanic climate research and disaster mitigation.Traditionally,real-time OST and OSS are mainly obtained through in-situ ocean observations and simulation by ocean circulation models,which are usually challenging and costly.Recently,dynamical,statistical,or machine learning models have been proposed to invert the OST/OSS from sea surface information;however,these models mainly focused on the inversion of monthly OST and OSS.To address this issue,we apply clustering algorithms and employ a stacking strategy to ensemble three models(XGBoost,Random Forest,and LightGBM)to invert the real-time OST/OSS based on satellite-derived data and the Argo dataset.Subsequently,a fusion of temperature and salinity is employed to reconstruct OST and OSS.In the validation dataset,the depth-averaged Correlation(Corr)of the estimated OST(OSS)is 0.919(0.83),and the average Root-Mean-Square Error(RMSE)is0.639°C(0.087 psu),with a depth-averaged coefficient of determination(R~2)of 0.84(0.68).Notably,at the thermocline where the base models exhibit their maximum error,the stacking-based fusion model exhibited significant performance enhancement,with a maximum enhancement in OST and OSS inversion exceeding 10%.We further found that the estimated OST and OSS exhibit good agreement with the HYbrid Coordinate Ocean Model(HYCOM)data and BOA_Argo dataset during the passage of a mesoscale eddy.This study shows that the proposed model can effectively invert the real-time OST and OSS,potentially enhancing the understanding of multi-scale oceanic processes in the SCS.
基金supported by the National Natural Science Foundation of China(NSFC)(62422501)Beijing Nova Program(20230484254,20240484742)Hebei Natural Science Foundation(F2024105039).
文摘Implantable temperature sensors are revolutionizing physiological monitoring and playing a crucial role in diagnostics,therapeutics,and life sciences research.This review classifies the materials used in these sensors into three categories:metal-based,inorganic semiconductor,and organic semiconductor materials.Metal-based materials are widely used in medical and industrial applications due to their linearity,stability,and reliability.Inorganic semiconductors provide rapid response times and high miniaturization potential,making them promising for biomedical and environmental monitoring.Organic semiconductors offer high sensitivity and ease of processing,enabling the development of flexible and stretchable sensors.This review analyzes recent studies for each material type,covering design principles,performance characteristics,and applications,highlighting key advantages and challenges regarding miniaturization,sensitivity,response time,and biocompatibility.Furthermore,critical performance parameters of implantable temperature sensors based on different material types are summarized,providing valuable references for future sensor design and optimization.The future development of implantable temperature sensors is discussed,focusing on improving biocompatibility,long-term stability,and multifunctional integration.These advancements are expected to expand the application potential of implantable sensors in telemedicine and dynamic physiological monitoring.
基金supported by the National Natural Science Foundation of China(32372223)the National Key Research and Development Program of China(2022YFD2301404)+1 种基金the College Students'Innovationand Entrepreneurship Training Program of Anhui Province,China(S202210364136)the Natural Science Research Project of Anhui Educational Committee,China(2023AH040133).
文摘Low temperature(LT)in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.Diverse analyses were performed to investigate the mechanism underlying the response of wheat grain development to LT stress during booting.These included morphological observation,measurements of starch synthase activity,and determination of amylose and amylopectin content of wheat grain after exposure to treatment with LT during booting.Additionally,proteomic analysis was performed using tandem mass tags(TMT).Results showed that the plumpness of wheat grains decreased after LT stress.Moreover,the activities of sucrose synthase(SuS,EC 2.4.1.13)and ADP-glucose pyrophosphorylase(AGPase,EC 2.7.7.27)exhibited a significant reduction,leading to a significant reduction in the contents of amylose and amylopectin.A total of 509 differentially expressed proteins(DEPs)were identified by proteomics analysis.The Gene Ontology(GO)enrichment analysis showed that the protein difference multiple in the nutritional repository activity was the largest among the molecular functions,and the up-regulated seed storage protein(ssP)played an active role in the response of grains to LT stress and subsequent damage.The Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis showed that LT stress reduced the expression of DEPs such as sucrose phosphate synthase(SPS),glucose-1-phosphate adenylyltransferase(glgC),andβ-fructofuranosidase(FFase)in sucrose and starch metabolic pathways,thus affecting the synthesis of grain starch.In addition,many heat shock proteins(HsPs)were found in the protein processing in endoplasmic reticulum pathways,which can resist some damage caused by LT stress.These findings provide a new theoretical foundation for elucidating the underlying mechanism governing wheat yield developmentafterexposuretoLTstress inspring.
基金Under the auspices of National Natural Science Foundation of China(No.42201374,42071359)。
文摘The roles of diurnal temperature in providing heat accumulation and chilling requirements for vegetation spring phenology differ.Although previous studies have established a stronger correlation between leaf onset and diurnal temperature than between leaf onset and average temperature,current research on modeling spring phenology based on diurnal temperature indicators remains limited.In this study,we confirmed the start of the growing season(SOS)sensitivity to diurnal temperature and average temperature in boreal forest.The estimation of SOS was carried out by employing K-Nearest Neighbor Regression(KNR-TDN)model,Random Forest Regres-sion(RFR-TDN)model,eXtreme Gradient Boosting(XGB-TDN)model and Light Gradient Boosting Machine model(LightGBM-TDN)driven by diurnal temperature indicators during 1982-2015,and the SOS was projected from 2015 to 2100 based on the Coupled Model Intercomparison Project Phase 6(CMIP6)climate scenario datasets.The sensitivity of boreal forest SOS to daytime temperature is greater than that to average temperature and nighttime temperature.The LightGBM-TDN model perform best across all vegetation types,exhibiting the lowest RMSE and bias compared to the KNR-TDN model,RFR-TDN model and XGB-TDN model.By incorporating diurn-al temperature indicators instead of relying only on average temperature indicators to simulate spring phenology,an improvement in the accuracy of the model is achieved.Furthermore,the preseason accumulated daytime temperature,daytime temperature and snow cover end date emerged as significant drivers of the SOS simulation in the study area.The simulation results based on LightGBM-TDN model exhibit a trend of advancing SOS followed by stabilization under future climate scenarios.This study underscores the potential of diurn-al temperature indicators as a viable alternative to average temperature indicators in driving spring phenology models,offering a prom-ising new method for simulating spring phenology.
基金Supported by Yunnan Fundamental Research Projects(Nos.202301AT070469,202301AT070275)Supported by Yunnan Major Scientific and Technological Projects(No.202202AG050002).
文摘Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy.With this approach,feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphaseflow within the furnace.Understanding the flow structure and temperature distribution in this setup is crucial foroptimizing production.In this study,gas-liquid interactions,and temperature profiles under varying air-injectionconditions are examined by means of numerical simulation for a 3.2 m×20 m furnace.The results indicate that thehigh-velocity regions are essentially distributed near the lance within the reaction region and the flue gas outlet,while low-velocity regions are located close to the furnace walls on both side of the reaction region.Dead regionsappear in the sedimentation region,with gas velocities surpassing those of the molten phase.As the injection rateincreases from 0.50 to 0.80 Nm3/s,the stabilization time of the average liquid surface velocity decreases from 2.6 sto 1.9 s,exhibiting a similar trend to the gas holdup.During stabilization,the average liquid surface velocity risesfrom 0.505 to 0.702 m/s.The average turbulent kinetic energy(TKE)of the fluid in the molten bath increases from0.095 to 0.162 m^(2)/s^(2).The proportion of the area distribution with TKE greater than 0.10 m^(2)/s^(2) and the gas holdupat steady state both rise with an increase in the injection quantity.The maximum splashing height of the melt growsfrom approximately 0.756 to 1.154 m,with the affected area expanding from 14.239 to 20.498 m^(2).Under differentworking conditions with varying injection quantities,the average temperature changes in melt zone and flue gaszone of the furnace are small.The temperature in the melt and in the flue-gas zone spans the interval 1200℃–1257℃,and 1073℃–1121℃,respectively.The temperature distribution of the melt and flue gas reveals a patterncharacterized by elevated temperatures in the reaction zone,gradually transitioning to lower temperatures in thesedimentation region.
基金Project(51775023)supported by the National Natural Science Foundation of ChinaProject(YWF-18-BJ-J-75)supported by the Fundamental Research Funds for the Central Universities,China
文摘The influence of initial groove angle on strain rate inside and outside groove of Ti6Al4V alloy was investigated.Based on the evolution of strain rate inside and outside groove,the effect of strain rate difference on the evolution of normal stress and effective stress inside and outside groove was also analyzed.The results show that when linear loading path changes from uniaxial tension to equi-biaxial tension,the initial groove angle plays a weaker role in the evolution of strain rate in the M-K model.Due to the constraint of force equilibrium between inside and outside groove,the strain rate difference makes the normal stress inside groove firstly decrease and then increase during calculation,which makes the prediction algorithm of forming limit convergent at elevated temperature.The decrease of normal stress inside groove is mainly caused by high temperature softening effect and the rotation of groove,while the increase of normal stress inside groove is mainly due to strain rate hardening effect.
基金Supported by Special Construction Project of Modern Agriculture(Citrus)Industry Technology System(cars-27)
文摘The experiment was mainly used to study the effect of insect-proof net mulching cultivation technology on the temperature and humidity of the greenhouse and the spring shoot growth of citrus Shatangju. The results showed that the 40-mesh translucent insect-proof net had a positive effect on the spring shoot growth of Shatangju in the spring from January to April. In the meantime,according to the change of the temperature and humidity inside and outside the insect-proof net and the change of quantity of Aleyrodidae,Tetranychidae and Phyllocnisidae,it was found that the role of insect-proof net in enhancing the spring shoot growth of Shatangju was possibly achieved by the regulation of citrus pests and the temperature and humidity inside the net.
文摘A statistical analysis on the simultaneous observation data of the temperature inside and outside the themometer shelter in Changsha during summer of 2011 and 2012 was carried out. The results show that the temperature outside the themometer shelter is higher( lower) than that inside the themometer shelter in the daytime( nighttime). However,there exists a similar variation trend for the average temperature and the extremely maximum temperature inside and outside the themometer shelter in summer. The average temperature and the extremely maximum temperature outside the themometer shelter are higher than that inside the themometer shelter. Furthermore,there exists a difference between the temperatures inside and outside the themometer shelter during different weather conditions. The difference of average temperature reaches 1. 2 ℃ in rainy day,2. 8 ℃ in cloudy day and 3. 1 ℃ in sunny day,and the extremely maximum temperature difference reaches 6. 4 ℃. Especially for the days of high temperature ≥35 ℃,there is 61 high temperature days inside the themometer shelter,while there is 125 high temperature days inside the themometer shelter during 2011- 2012. Furthermore,the extremely maximum temperatures inside and outside the themometer shelter are 38. 9 and42. 0 ℃ respectively. Rainfall and showery rain are the most effective ways to relieve the high temperature in summer. Therefore,the difference between the temperatures inside and outside the themometer shelter should be taken into account in the high temperature forecast and public meteorological service.
基金supported by the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.ZDBS-LY-DQC010)the National Natural Science Foundation of China(Grant No.42175045).
文摘In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming has become one of the hottest topics in the scientific community and is closely connected to the future development of human society.We analyzed the monthly varying global mean surface temperature(GMST)in 2023 and found that the globe,the land,and the oceans in 2023 all exhibit extraordinary warming,which is distinct from any previous year in recorded history.Based on the GMST statistical ensemble prediction model developed at the Institute of Atmospheric Physics,the GMST in 2023 is predicted to be 1.41℃±0.07℃,which will certainly surpass that in 2016 as the warmest year since 1850,and is approaching the 1.5℃ global warming threshold.Compared to 2022,the GMST in 2023 will increase by 0.24℃,with 88%of the increment contributed by the annual variability as mostly affected by El Niño.Moreover,the multidecadal variability related to the Atlantic Multidecadal Oscillation(AMO)in 2023 also provided an important warming background for sparking the GMST rise.As a result,the GMST in 2023 is projected to be 1.15℃±0.07℃,with only a 0.02℃ increment,if the effects of natural variability—including El Niño and the AMO—are eliminated and only the global warming trend is considered.
文摘To evaluate the effects of solar greenhouse with different structure and CO2 enrichment on illumination and temperature performance of greenhouse and cucumber growth and development in the central region of Inner Mongolia, the research used traditional solar greenhouse (A) and blanket-inside solar greenhouse(B), and set 4 treatments: AE (traditional solar greenhouse A with CO2 enrichment), AN (traditional solar greenhouse A without CO2 enrichment), BE (blanket-inside solar greenhouse B with CO2 enrichment) and BN (blanket-inside solar greenhouse B without CO2 enrichment), to explore the influence of cucumber growth, photosynthetic property, quality and yield in different structure solar greenhouses with CO2 enrichment. The results showed that the illumination and temperature in blanket-inside solar greenhouse was superior to traditional solar greenhouse, and the average light intensity in blanket-inside solar greenhouse increased by 21.05%, compared with traditional solar greenhouse. Under the condition of same greenhouse structure, stem height ,average stem diameter, contents of soluble sugar, vitamin C, net photosynthetic rate and yield showed any significant difference between the treatments with CO2 enrichment or not. Under the condition of same CO2 concentration, BE cucumber average stem height, average stem diameter, contents of soluble sugar, net photosynthetic rate and yield in BE was higher than which in AE. Therefore, the optimization in structure of blanket-inside solar greenhouse remarkably improved illumination and temperature property, combining with CO2 enrichment as application technology, there was crucial significance to promote the greenhouse performance and improve the efficiency of greenhouse vegetable production.
基金supported by the National Science and Technology Major Project,China(No.2019-VI-0004-0118)the National Natural Science Foundation of China(No.51771152)the National Key R&D Program of China(No.2018YFB1106800)。
文摘Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.
基金supported from Science and Technology Development Program of Jilin Province(Nos.20240101128JC,20230402058GH)National Natural Science Foundation of China(No.52130101).
文摘Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current.
基金financially supported by the National Key K&D Program of China(No.2023YFE0200300)the National Natural Science Foundation of China(Nos.52174303and 51874084)the Program of Introducing Talents of Discipline to Universities(No.B21001)。
文摘Multistage heat treatment involving quenching(Q),lamellarizing(L),and tempering(T)is applied to marine 10Ni5CrMoV steel.The microstructure and mechanical properties were studied by multiscale characterizations,and the kinetics of reverse austenite transformation,strain hardening behavior,and toughening mechanism were further investigated.The lamellarized specimens possess low yield strength but high toughness,especially cryogenic toughness.Lamellarization leads to the development of film-like reversed austenite at the martensite block and lath boundaries,refining the martensite structure and lowering the equivalent grain size.Kinetic analysis of austenite reversion based on the JMAK model shows that the isothermal transformation is dominated by the growth of reversed austenite,and the maximum transformation of reversed austenite is reached at the peak temperature(750℃).The strain hardening behavior based on the modified Crussard-Jaoul analysis indicates that the reversed austenite obtained from lamellarization reduces the proportion of martensite,significantly hindering crack propagation via martensitic transformation during the deformation.As a consequence,the QLT specimens exhibit high machinability and low yield strength.Compared with the QT specimen,the ductile-brittle transition temperature of the QLT specimens decreases from-116 to-130℃due to the low equivalent grain size and reversed austenite,which increases the cleavage force required for crack propagation and absorbs the energy of external load,respectively.This work provides an idea to improve the cryogenic toughness of marine 10Ni5CrMoV steel and lays a theoretical foundation for its industrial application and comprehensive performance improvement.
文摘BACKGROUND Cardiovascular disease(CVD)is a leading cause of morbidity and mortality worldwide,the global burden of which is rising.It is still unclear the extent to which prediabetes contributes to the risk of CVD in various age brackets among adults.To develop a focused screening plan and treatment for Chinese adults with prediabetes,it is crucial to identify variations in the connection between prediabetes and the risk of CVD based on age.AIM To examine the clinical features of prediabetes and identify risk factors for CVD in different age groups in China.METHODS The cross-sectional study involved a total of 46239 participants from June 2007 through May 2008.A thorough evaluation was conducted.Individuals with prediabetes were categorized into two groups based on age.Chinese atherosclerotic CVD risk prediction model was employed to evaluate the risk of developing CVD over 10 years.Random forest was established in both age groups.SHapley Additive exPlanation method prioritized the importance of features from the perspective of assessment contribution.RESULTS In total,6948 people were diagnosed with prediabetes in this study.In prediabetes,prevalences of CVD were 5(0.29%)in the younger group and 148(2.85%)in the older group.Overall,11.11%of the younger group and 29.59% of the older group were intermediate/high-risk of CVD for prediabetes without CVD based on the Prediction for ASCVD Risk in China equation in ten years.In the younger age group,the 10-year risk of CVD was found to be more closely linked to family history of CVD rather than lifestyle,whereas in the older age group,resident status was more closely linked.CONCLUSION The susceptibility to CVD is age-specific in newly diagnosed prediabetes.It is necessary to develop targeted approaches for the prevention and management of CVD in adults across various age brackets.
基金supported by National Natural Science Foundation of China(Grant Nos.32072614 and 31972452)Shandong Provincial Natural Science Foundation(Grant Nos.ZR2020MC146 and ZR2020QC160)Seed improvement project of Shandong Province(Grant No.2020LZGC011-1-4)。
文摘Tree peony(Paeonia suffruticosa Andrews)is a well-known ornamental plant with high economic value,but the short fluorescence is a key obstacle to its ornamental value and industry development.High temperature accelerates flower senescence and abscission,but the associated mechanisms are poorly understood.In this study,the tandem mass tag(TMT)proteome and label-free quantitative ubiquitome from tree peony cut flowers treated with 20℃for 0 h(RT0),20℃or 28℃for 60 h(RT60 or HT60)were examined based on morphological observation,respectively.Totally,6970 proteins and 1545 lysine ubiquitinated(Kub)sites in 844 proteins were identified.Hydrophilic residues(such as glutamate and aspartate)neighboring the Kub sites were in preference,and 36.01%of the Kub sites were located on the protein surface.The differentially expressed proteins(DEPs)and Kub-DEPs in HT60 vs RT60 were mainly enriched in ribosomal protein,protein biosynthesis,secondary metabolites biosynthesis,flavonoid metabolism,carbohydrate catabolism,and auxin biosynthesis and signaling revealed by GO and KEGG analysis,accompanying the increase of endogenous abscisic acid(ABA)accumulation and decrease of endogenous indoleacetic acid(IAA)level.Additionally,the expression patterns of six enzymes(SAMS,ACO,YUC,CHS,ANS and PFK)putatively with Kub modifications were analyzed by proteome and real-time quantitative RT-PCR.The cell-free degradation assays showed PsSAMS and PsACO proteins could be degraded via the 26 S proteasome system in tree peony flowers.Finally,a working model was proposed for the acceleration of flower senescence and abscission by high temperature.In summary,all results contributed to understanding the mechanism of flower senescence induced by high temperature and prolonging fluorescence in tree peony.
基金supported by the National Natural Science Foundation of China (No.92372123)the Natural Science Foundation of Guangdong Province (No.2022B1515020005)the Department of Science and Technology of Guangdong Province (No.2020B0101030005)
文摘Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.
基金supported by the National Science Fund for Distinguished Young Scholars(22125804)the National Natural Science Foundation of China(21808110,22078155,and 21878149).
文摘Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.
基金funded by the National Natural Science Foundation of China(Nos.42320104003 and 42107163)the Funda mental Research Funds for the Central Universities.Derek Elsworth acknowledges support from the G.Albert Shoemaker endowment.
文摘Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.
基金supported by China Agriculture Research System of MOF and MARA(Grant No.CARS23-B10)The Major Science and Technology Projects in Hainan Province(Grant No.ZDKJ2021005)+1 种基金Key R&D projects in Shandong Province(Grant No.LJNY202106)Central Public-interest Scientific Institution Basal Research Fund(Grant No.IVF-BRF2023006)。
文摘Grafting is an effective technique for increasing the resistance of vegetables to biotic and abiotic stresses.It has been widely applied to produce solanaceous and melon vegetables.Temperature is an important external factor affecting graft formation.However,the molecular mechanism by which external ambient temperature affects tomato graft formation remains unclear.In this study,we demonstrated that elevating ambient temperature during grafting to 35℃ for more than 24 h after grafting accelerated vascular reconnection.We generated self-or heterografted combinations between phyB1B2 and pif4 loss-of-function mutant and wild-type plants,and were mutants unresponsive to graft formation at elevated ambient temperature.In addition,elevated ambient temperature induced SlPIF4 expression during grafting.SlPIF4 directly binds the promoters of auxin biosynthesis genes SlYUCCAs and activates their expression.Further investigation revealed auxin accumulation in the graft junction under elevated ambient temperature.The results illuminate the mechanism by which the PHYB-PIF4-auxin module promotes tomato graft formation in response to elevated ambient temperature.