In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and t...In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and that at a limit point can be discussed with the theory of elastoplasticity. In this paper, the nonlinear dynamic instability of structures was treated with mathematical and mechanical theories. The research methods for the problems of structural nonlinear dynamic stability were discussed first, and then the criterion of stability or instability of structures, the method to obtain the bifurcation point and the limit point, and the formulae of the directions of the branch solutions at a bifurcation point were elucidated. These methods can be applied to the problems of nonlinear dynamic instability of structures such as reticulated shells, space grid structures, and so on. Key words nonlinear dynamic instability - engineering structures - non-stationary nonlinear system - bifurcation point - instability at a bifurcation point - limit point MSC 2000 74K25 Project supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No. 02AK04), the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No. 02ZA14034)展开更多
文摘In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and that at a limit point can be discussed with the theory of elastoplasticity. In this paper, the nonlinear dynamic instability of structures was treated with mathematical and mechanical theories. The research methods for the problems of structural nonlinear dynamic stability were discussed first, and then the criterion of stability or instability of structures, the method to obtain the bifurcation point and the limit point, and the formulae of the directions of the branch solutions at a bifurcation point were elucidated. These methods can be applied to the problems of nonlinear dynamic instability of structures such as reticulated shells, space grid structures, and so on. Key words nonlinear dynamic instability - engineering structures - non-stationary nonlinear system - bifurcation point - instability at a bifurcation point - limit point MSC 2000 74K25 Project supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No. 02AK04), the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No. 02ZA14034)