A novel simple two-dimensional square-lattice model of amphiphile at oil-water interface is developed,in which oil and water act as solvent and occupy empty sites and amphiphile occupies chains of sites. In this mode...A novel simple two-dimensional square-lattice model of amphiphile at oil-water interface is developed,in which oil and water act as solvent and occupy empty sites and amphiphile occupies chains of sites. In this model, the oil-water interface is fixed, And amphiphile molecules will be enriched at the oil-water interface. The interfacial concentration of amphiphile calculated by Monte Carlo method shows that it is easier for the hydrophilic-hydrophobic balanced amphiphile to stay at the interface. And the adsorption of amphiphile increases with the increase of amphiphile concentration and the decrease with temperature.展开更多
Amphiphile-oil-water system is complicated. The real behavior of amphiphile in the interface is still undnown despite that this behavior is very important in determining the stability of emulsion system. In this paper...Amphiphile-oil-water system is complicated. The real behavior of amphiphile in the interface is still undnown despite that this behavior is very important in determining the stability of emulsion system. In this paper, the interface properties of amphiphile at oil-water interface were investigated by a square-lattice model Monte Carlo simulation method. The synergistic effect was found for hydrophobic and hydrophilic amphiphile mixture systems; and the synergistic effect disappears or was weakened as the amphiphile at the interface region became dilute with the increasing of temperature.展开更多
The shock tube experiments of inclined air/SF6 interface instability under the shock wave with the Mach numbers 1.23 and 1.41 are conducted. The numerical simulation is done with the parallel algorithm and the multi-v...The shock tube experiments of inclined air/SF6 interface instability under the shock wave with the Mach numbers 1.23 and 1.41 are conducted. The numerical simulation is done with the parallel algorithm and the multi-viscous-fluid and turbulence (MVFT) code of the large-eddy simulation (LES). The developing process of the interface accelerated by the shock wave is reproduced by the simulations. The complex wave structures, e.g., the propagation, refraction, and reflection of the shock wave, are clearly revealed in the flows. The simulated evolving images of the interface are consistent with the experimental ones. The simulated width of the turbulent mixing zone (TMZ) and the displacements of the bubble and the spike also agree well with the experimental data. Also, the reliability and effectiveness of the MVFT in simulating the problem of interface instability are validated. The more energies are injected into the TMZ when the shock wave has a larger Mach number. Therefore, the perturbed interface develops faster.展开更多
Solid-state lithium batteries(SSLBs)with high safety have emerged to meet the increasing energy density demands of electric vehicles,hybrid electric vehicles,and portable electronic devices.However,the dendrite format...Solid-state lithium batteries(SSLBs)with high safety have emerged to meet the increasing energy density demands of electric vehicles,hybrid electric vehicles,and portable electronic devices.However,the dendrite formation,high interfacial resistance,and deleterious interfacial reactions caused by solid-solid contact between electrode and electrolyte have hindered the commercialization of SSLBs.Thus,in this review,the state-of-the-art developments in the rational design of solid-state electrolyte and their progression toward practical applications are reviewed.First,the origin of interface instability and the sluggish charge carrier transportation in solid-solid interface are presented.Second,various strategies toward stabilizing interfacial stability(reducing interfacial resistance,suppressing lithium dendrites,and side reactions)are summarized from the physical and chemical perspective,including building protective layer,constructing 3D and gradient structures,etc.Finally,the remaining challenges and future development trends of solidstate electrolyte are prospected.This review provides a deep insight into solving the interfacial instability issues and promising solutions to enable practical high-energy-density lithium metal batteries.展开更多
To study the effect of interface behaviour on the mechanical properties and damage evolution of PBX under combined tension-shear loading, the present work establishes the numerical model of a PBX three-phase hybrid sy...To study the effect of interface behaviour on the mechanical properties and damage evolution of PBX under combined tension-shear loading, the present work establishes the numerical model of a PBX three-phase hybrid system, which introduces a nonlinear plastic damage cohesion model to study the mechanical response and damage process. The parameters in the model were fitted and calibrated.Taking the crack growth rate as the feature, the damage state in each stage was determined, and the damage instability criterion was given. The effects of interfacial tensile strength and shear strength on the damage process of PBX were studied. On this basis, serrated and hemispherical structures interface of PBX has been developed, which affects the damage process and instability during the loading process.The results indicate that damage state response of PBX experiences the process of stable load bearing,unstable propagation, and complete failure. At the critical moment of instability, the overall equivalent effective strain of material reaches 3024 με and instability loading displacement reaches 0.39 mm. The increase of interfacial tensile strength and shear strength significantly inhibits the damage of PBX. The effect of interfacial shear strength on critical instability of PBX is approximately 1.7 times that of the interfacial tensile strength. Further, interface opening along the normal direction is the main damage form at the interface. Serrated and hemispherical rough interfaces can significantly inhibit propagation of cracks, and the load bearing capacity is improved by 22% and 9.7%, respectively. Appropriate improvement of the roughness of the interface structure can effectively improve the mechanical properties. It is significantly important to have a better understanding of deformation, damage and failure mechanisms of PBX and to improve our predictive ability.展开更多
The interaction between a converging cylindrical shock and double density interfaces in the presence of a saddle magnetic field is numerically investigated within the framework of ideal magnetohydrodynamics.Three flui...The interaction between a converging cylindrical shock and double density interfaces in the presence of a saddle magnetic field is numerically investigated within the framework of ideal magnetohydrodynamics.Three fluids of differing densities are initially separated by the two perturbed cylindrical interfaces.The initial incident converging shock is generated from a Riemann problem upstream of the first interface.The effect of the magnetic field on the instabilities is studied through varying the field strength.It shows that the Richtmyer-Meshkov and Rayleigh-Taylor instabilities are mitigated by the field,however,the extent of the suppression varies on the interface which leads to non-axisymmetric growth of the perturbations.The degree of asymmetry of the interfacial growth rate is increased when the seed field strength is increased.展开更多
The Richtmyer-Meshkov instability ofa ‘V' shaped air/helium gaseous interface subjected to a weak shock wave is experimentally studied. A soap film technique is adopted to create a ‘V' shaped interface with accura...The Richtmyer-Meshkov instability ofa ‘V' shaped air/helium gaseous interface subjected to a weak shock wave is experimentally studied. A soap film technique is adopted to create a ‘V' shaped interface with accurate initial conditions. Five kinds of ‘V' shaped interfaces with different vertex angles are formed to highlight the effects of initial conditions on the flow characteristics. The results show that a spike is generated after the shock impact, and grows constantly with time. As the vertex angle increases, vortices generated on the interface become less noticeable, and the spike develops less pronouncedly. The linear growth rate of interface width after compression phase is estimated by a linear model and a revised linear model, and the latter is proven to be more effective for the interface with high initial amplitudes. The linear growth rate of interface width is, for the first time in a heavy/light interface configuration, found to be a non-monotonous function of the initial perturbation amplitude-wavelength ratio.展开更多
Based on the (Ⅰ) of the present work, the behavior of shear beam model at crack initiation stage and at instable propagation stage was studied. The prime results include: 1) discriminant equation which clarifies the ...Based on the (Ⅰ) of the present work, the behavior of shear beam model at crack initiation stage and at instable propagation stage was studied. The prime results include: 1) discriminant equation which clarifies the mode of instability, snap_back or snap_through, was established; 2) analytical solution was given out for the double shear beam and the load_displacement diagram for monotonic loading was presented for a full process; and 3) the problem of the energy release induced by instability was discussed.展开更多
The Kelvin-Helmholtz instability is believed to be the dominant instability mechanism for free shear flows at large Reynolds numbers. At small Reynolds numbers, a new instability mode is identified when the temporal i...The Kelvin-Helmholtz instability is believed to be the dominant instability mechanism for free shear flows at large Reynolds numbers. At small Reynolds numbers, a new instability mode is identified when the temporal instability of parallel viscous two fluid mixing layers is extended to current-fluid mud systems by considering a composite error function velocity profile. The new mode is caused by the large viscosity difference between the two fluids. This interfacial mode exists when the fluid mud boundary layer is sufficiently thin. Its performance is different from that of the Kelvin-Helmholtz mode. This mode has not yet been reported for interface instability problems with large viscosity contrasts. These results are essential for further stability analysis of flows relevant to the breaking up of this type of interface.展开更多
The exponent n of the generation of an interface trap (Nit), which contributes to the power-law negative bias temperature instability (NBTI) degradation, and the exponent’s time evolution are investigated by simu...The exponent n of the generation of an interface trap (Nit), which contributes to the power-law negative bias temperature instability (NBTI) degradation, and the exponent’s time evolution are investigated by simulations with varying the stress voltage Vg and temperature T. It is found that the exponent n in the diffusion-limited phase of the degradation process is irrelevant to both Vg and T. The time evolution of the exponent n is affected by the stress conditions, which is reflected in the shift of the onset of the diffusion-limited phase. According to the diffusion profiles, the generation of the atomic hydrogen species, which is equal to the buildup of Nit, is strongly correlated with the stress conditions, whereas the diffusion of the hydrogen species shows Vg-unaffected but T-affected relations through the normalized results.展开更多
The morphological stability of a planar interface with different crystallographic orientations is studied under a small positive temperature gradient using a transparent model alloy of succinonitrile. Novel experiment...The morphological stability of a planar interface with different crystallographic orientations is studied under a small positive temperature gradient using a transparent model alloy of succinonitrile. Novel experimental apparatus is constructed to provide a temperature gradient of about 0.37 K/mm. Under this small temperature gradient, the planar interface instability depends largely on the crystallographic orientation. It is shown experimentally that the effect of interfacial energy anisotropy on planar interface stability cannot be neglected even in a small temperature gradient system. Higher interfacial energy anisotropy leads the planar interface to become more unstable, which is different from the stabilizing effect of the interfacial energy on the planar interface. The experimental results are in agreement with previous theoretical calculations and phase field simulations.展开更多
We investigate the instability of threshold voltage in D-mode MIS-HEMT with in-situ SiN as gate dielectric under different negative gate stresses.The complex non-monotonic evolution of threshold voltage under the nega...We investigate the instability of threshold voltage in D-mode MIS-HEMT with in-situ SiN as gate dielectric under different negative gate stresses.The complex non-monotonic evolution of threshold voltage under the negative stress and during the recovery process is induced by the combination effect of two mechanisms.The effect of trapping behavior of interface state at SiN/AlGaN interface and the effect of zener traps in AlGaN barrier layer on the threshold voltage instability are opposite to each other.The threshold voltage shifts negatively under the negative stress due to the detrapping of the electrons at SiN/AlGaN interface,and shifts positively due to zener trapping in AlGaN barrier layer.As the stress is removed,the threshold voltage shifts positively for the retrapping of interface states and negatively for the thermal detrapping in AlGaN.However,it is the trapping behavior in the AlGaN rather than the interface state that results in the change of transconductance in the D-mode MIS-HEMT.展开更多
Interactions of shock wave and heavy gas cylinders with different diffusive interfaces are numerically investigated. Comparisons among these interfaces are made in terms of cylinder morphology, wave system evolution, ...Interactions of shock wave and heavy gas cylinders with different diffusive interfaces are numerically investigated. Comparisons among these interfaces are made in terms of cylinder morphology, wave system evolution, fluids mixing, and circulation generation. Navier-Stokes equations are solved in the present work to simulate the complex multi-fluid flow. The fifth-order weighted essentially non-oscillatory scheme is used to compute the numerical flux. The influence of interface diffusion is revealed by the numerical results. The cylinders with similar geometric scale but different diffusion interface have great similarities in the hydrodynamic characteristics, including the interface morphology, shock focusing and molecular mixing, as well as circulation deposition. For the cases with more serious interface diffusion, the cylinder develops into more regular vortex pairs. The diffusive interface greatly mitigates the strength of the reflected shock wave and weakens the shock focusing capability. Some interface structural features are also recorded and analyzed. The diffusive interface brings about slower molecular mixing and less circulation generation. The circulation deposition on different interfaces is quantitatively investigated and compared with the theoretical models. The theoretical models are found to be applicable to the scenarios of diffusive interfaces.展开更多
Some of the main progress on the investigation of the mechanism of the wave formation in explosive welding at the Institute of Mechanics is summarized and otters'previous works are re- viewed.Our systematic experi...Some of the main progress on the investigation of the mechanism of the wave formation in explosive welding at the Institute of Mechanics is summarized and otters'previous works are re- viewed.Our systematic experiments and analysis do not substantiate the theory of wave formation based on Karman vortex-street analogy or Helmholtz instability.On the contrary,they show that materi- al strength insensitive to strain rate plays an important role.A simple hydro-plastic model is presented to explain the main features regarding the interracial wave formation and to estimate the magnitude of wave length.The result is in broad agreement with experiment.展开更多
The wavy interface for similar or the same metal explosive welding(EXW) and the universal mechanism of wavy interface formation in EXW were studied in this work. Based on a new established model, it was deduced that...The wavy interface for similar or the same metal explosive welding(EXW) and the universal mechanism of wavy interface formation in EXW were studied in this work. Based on a new established model, it was deduced that the evolution frequencies of the instability were constrained in a limited range. Then experiments of identical metal EXW were performed and welding interfaces were characterized for examining the final morphology. By calculating the fractal dimensions and multifractal spectra of welding interface, the fractal characteristics of interface were revealed and a quantitative description was achieved for EXW interface structure. Thus, the formation, evolution and final morphology of wavy interface were systemically researched.展开更多
The propagation of interlayer cracks and the resulting failure of the interface is a typical mode occurring in rock engineering and masonry structure. On the basis of the theory of elasto^plasticity and fracture mecha...The propagation of interlayer cracks and the resulting failure of the interface is a typical mode occurring in rock engineering and masonry structure. On the basis of the theory of elasto^plasticity and fracture mechanics, the shear beam model for the solution of interface failure was presented. The concept of `cohesive crack' was adopted to describe the constitutive behavior of the cohesive interfacial layer. Related fundamental equations such as equilibrium equation, constitutive equations were presented. The behavior of a double shear beam bonded through cohesive layer was analytically calculated. The stable propagation of interface crack and process zone was investigated.展开更多
Based on the circuit principle of 1186 Electro Chemical Interface preduced by Solartron Electronic Group Ltd., a precise electro chemical interface (ECI) unit, which can provide the interfacing requirements for the co...Based on the circuit principle of 1186 Electro Chemical Interface preduced by Solartron Electronic Group Ltd., a precise electro chemical interface (ECI) unit, which can provide the interfacing requirements for the control and measurement of characteristics of electro chemical cell, was developed by means of some essential improvements. Not only can it be used to control and measure the steady and non-steady state characteristics, but also it can be directly connected with Solartron 1170 series or 1250 Frequency Response Analysers (FRA) to measure the AC impedance. Besides,the EC1 can also be connected with two- or three-electrode electro chemical cell systems to test convenlently and correctly their DC and AC characteristics, and used as a four-electrode potentlostat combined with four-electrode electro chernical cell system which contains two reference electrodes (RES) for researches on the electro chemical characteristics of oil-water interface, etc.展开更多
The instabilities of a three-dimensional sinusoidally premixed flame induced by an incident shock wave with Mach = 1.7 and its reshock waves were studied by using the Navier-Stokes (NS) equations with a single-step ch...The instabilities of a three-dimensional sinusoidally premixed flame induced by an incident shock wave with Mach = 1.7 and its reshock waves were studied by using the Navier-Stokes (NS) equations with a single-step chemical reaction and a high resolution, 9th-order weighted essentially non-oscillatory scheme. The computational results were validated by the grid independence test and the experimental results in the literature. The computational results show that after the passage of incident shock wave the flame interface develops in symmetric structure accompanied by large-scale transverse vortex structures. After the interactions by successive reshock waves, the flame interface is gradually destabilized and broken up, and the large-scale vortex structures are gradually transformed into small-scale vortex structures. The small-scale vortices tend to be isotropic later. The results also reveal that the evolution of the flame interface is affected by both mixing process and chemical reaction. In order to identify the relationship between the mixing and the chemical reaction, a dimensionless parameter, , that is defined as the ratio of mixing time scale to chemical reaction time scale, is introduced. It is found that at each interaction stage the effect of chemical reaction is enhanced with time. The enhanced effect of chemical reaction at the interaction stage by incident shock wave is greater than that at the interaction stages by reshock waves. The result suggests that the parameter can reasonably character the features of flame interface development induced by the multiple shock waves.展开更多
A program MVFT3D of large-eddy simulation is developed and performed to solve the multi compressible Navier- Stokes equations. The SGS dissipation and molecular viscosity dissipation have been analyzed, and the former...A program MVFT3D of large-eddy simulation is developed and performed to solve the multi compressible Navier- Stokes equations. The SGS dissipation and molecular viscosity dissipation have been analyzed, and the former is much larger than the later. Our test shows that the SGS dissipation of Vreman model is smaller than the Smagorinsky model. We mainly simulate the experiment of fluid instability of shock-accelerated interface by Poggi in this paper. The decay of the turbulent kinetic energy before the first reflected shock wave–mixing zone interaction and its strong enhancement by re-shocks are presented in our numerical simulations. The computational mixing zone width under double re-shock agreement well with the experiment, and the decaying law of the turbulent kinetic energy is consistent with Mohamed and Larue’s investigation. Also, by using MVFT3D we give some simulation results of the inverse Chevron model from AWE. The numerical simulations presented in this paper allow us to characterize and better understand the Richtmyer-Meshkov instability induced turbulence, and the code MVFT3D is validated.展开更多
In this paper, the shear beam model for analysis of interface failure under joint action of anti-plane shearing and lateral compression and its principal behavior were briefly introduced. The calculation of energy rel...In this paper, the shear beam model for analysis of interface failure under joint action of anti-plane shearing and lateral compression and its principal behavior were briefly introduced. The calculation of energy release that is related to the strength of earthquake was presented by using the shear beam model. The sudden increase of load resulted from the 'stress locking' at the interface layer in the reloading process was investigated. At the end of the paper, discussions on the mechanism of earthquake were given out.展开更多
基金Supported by the National Natural Science Foundation of China (No. 29736170)and the Natural Science Foundation of Zhejiang Province(No. RC01051).
文摘A novel simple two-dimensional square-lattice model of amphiphile at oil-water interface is developed,in which oil and water act as solvent and occupy empty sites and amphiphile occupies chains of sites. In this model, the oil-water interface is fixed, And amphiphile molecules will be enriched at the oil-water interface. The interfacial concentration of amphiphile calculated by Monte Carlo method shows that it is easier for the hydrophilic-hydrophobic balanced amphiphile to stay at the interface. And the adsorption of amphiphile increases with the increase of amphiphile concentration and the decrease with temperature.
基金Supported by the National Natural Science Foundation of China (No. 29736170) the Natural Science Foundation of Zhejiang Province (No. RC01051).
文摘Amphiphile-oil-water system is complicated. The real behavior of amphiphile in the interface is still undnown despite that this behavior is very important in determining the stability of emulsion system. In this paper, the interface properties of amphiphile at oil-water interface were investigated by a square-lattice model Monte Carlo simulation method. The synergistic effect was found for hydrophobic and hydrophilic amphiphile mixture systems; and the synergistic effect disappears or was weakened as the amphiphile at the interface region became dilute with the increasing of temperature.
基金supported by the National Natural Science Foundation of China (Nos. 11072228 and 11002129)
文摘The shock tube experiments of inclined air/SF6 interface instability under the shock wave with the Mach numbers 1.23 and 1.41 are conducted. The numerical simulation is done with the parallel algorithm and the multi-viscous-fluid and turbulence (MVFT) code of the large-eddy simulation (LES). The developing process of the interface accelerated by the shock wave is reproduced by the simulations. The complex wave structures, e.g., the propagation, refraction, and reflection of the shock wave, are clearly revealed in the flows. The simulated evolving images of the interface are consistent with the experimental ones. The simulated width of the turbulent mixing zone (TMZ) and the displacements of the bubble and the spike also agree well with the experimental data. Also, the reliability and effectiveness of the MVFT in simulating the problem of interface instability are validated. The more energies are injected into the TMZ when the shock wave has a larger Mach number. Therefore, the perturbed interface develops faster.
基金supported by the National Key R&D Program(2022YFE0206400)the National Natural Science Foundation of China(52202256)+4 种基金the Natural Science Foundation of Jiangsu Province of China(BK20220612)the Science and Technology Development Fund,Macao SAR(0096/2020/A2,0013/2021/AMJ,and 0082/2022/A2)the Opening Project of the Key Laboratory of Jiangsu Province for Silk Engineering,Soochow University(KJS2277)the funds from Jiangsu University“Qinglan Project”the Young Elite Scientists Sponsorship Program of the Jiangsu Association for Science and Technology
文摘Solid-state lithium batteries(SSLBs)with high safety have emerged to meet the increasing energy density demands of electric vehicles,hybrid electric vehicles,and portable electronic devices.However,the dendrite formation,high interfacial resistance,and deleterious interfacial reactions caused by solid-solid contact between electrode and electrolyte have hindered the commercialization of SSLBs.Thus,in this review,the state-of-the-art developments in the rational design of solid-state electrolyte and their progression toward practical applications are reviewed.First,the origin of interface instability and the sluggish charge carrier transportation in solid-solid interface are presented.Second,various strategies toward stabilizing interfacial stability(reducing interfacial resistance,suppressing lithium dendrites,and side reactions)are summarized from the physical and chemical perspective,including building protective layer,constructing 3D and gradient structures,etc.Finally,the remaining challenges and future development trends of solidstate electrolyte are prospected.This review provides a deep insight into solving the interfacial instability issues and promising solutions to enable practical high-energy-density lithium metal batteries.
基金the China National Nature Science Foundation (Grant No. 11872119)China Postdoctoral Science Foundation (Grant Nos. BX20200046, 2020M680394)Pre-research Project of Armament (Grant No. 6142A03202002) for supporting this project
文摘To study the effect of interface behaviour on the mechanical properties and damage evolution of PBX under combined tension-shear loading, the present work establishes the numerical model of a PBX three-phase hybrid system, which introduces a nonlinear plastic damage cohesion model to study the mechanical response and damage process. The parameters in the model were fitted and calibrated.Taking the crack growth rate as the feature, the damage state in each stage was determined, and the damage instability criterion was given. The effects of interfacial tensile strength and shear strength on the damage process of PBX were studied. On this basis, serrated and hemispherical structures interface of PBX has been developed, which affects the damage process and instability during the loading process.The results indicate that damage state response of PBX experiences the process of stable load bearing,unstable propagation, and complete failure. At the critical moment of instability, the overall equivalent effective strain of material reaches 3024 με and instability loading displacement reaches 0.39 mm. The increase of interfacial tensile strength and shear strength significantly inhibits the damage of PBX. The effect of interfacial shear strength on critical instability of PBX is approximately 1.7 times that of the interfacial tensile strength. Further, interface opening along the normal direction is the main damage form at the interface. Serrated and hemispherical rough interfaces can significantly inhibit propagation of cracks, and the load bearing capacity is improved by 22% and 9.7%, respectively. Appropriate improvement of the roughness of the interface structure can effectively improve the mechanical properties. It is significantly important to have a better understanding of deformation, damage and failure mechanisms of PBX and to improve our predictive ability.
基金This work was supported by the KAUST Office of Spon-sored Research under Award No.URF/1/2162-01.
文摘The interaction between a converging cylindrical shock and double density interfaces in the presence of a saddle magnetic field is numerically investigated within the framework of ideal magnetohydrodynamics.Three fluids of differing densities are initially separated by the two perturbed cylindrical interfaces.The initial incident converging shock is generated from a Riemann problem upstream of the first interface.The effect of the magnetic field on the instabilities is studied through varying the field strength.It shows that the Richtmyer-Meshkov and Rayleigh-Taylor instabilities are mitigated by the field,however,the extent of the suppression varies on the interface which leads to non-axisymmetric growth of the perturbations.The degree of asymmetry of the interfacial growth rate is increased when the seed field strength is increased.
基金supported by the National Natural Science Foundation of China(U1530103,11302219,and 11272308)
文摘The Richtmyer-Meshkov instability ofa ‘V' shaped air/helium gaseous interface subjected to a weak shock wave is experimentally studied. A soap film technique is adopted to create a ‘V' shaped interface with accurate initial conditions. Five kinds of ‘V' shaped interfaces with different vertex angles are formed to highlight the effects of initial conditions on the flow characteristics. The results show that a spike is generated after the shock impact, and grows constantly with time. As the vertex angle increases, vortices generated on the interface become less noticeable, and the spike develops less pronouncedly. The linear growth rate of interface width after compression phase is estimated by a linear model and a revised linear model, and the latter is proven to be more effective for the interface with high initial amplitudes. The linear growth rate of interface width is, for the first time in a heavy/light interface configuration, found to be a non-monotonous function of the initial perturbation amplitude-wavelength ratio.
基金the EU project(INCO-Compernicus,ERBIC 15 CT970706)Research Foundation for Youth Scientist of Northeastern University,Shenyang,china(856049)
文摘Based on the (Ⅰ) of the present work, the behavior of shear beam model at crack initiation stage and at instable propagation stage was studied. The prime results include: 1) discriminant equation which clarifies the mode of instability, snap_back or snap_through, was established; 2) analytical solution was given out for the double shear beam and the load_displacement diagram for monotonic loading was presented for a full process; and 3) the problem of the energy release induced by instability was discussed.
基金supported by the National Natural Science Foundation of China (Grants 11172307, 11232012 11572332)973 Program (Grant 2014CB046200)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB22040203)
文摘The Kelvin-Helmholtz instability is believed to be the dominant instability mechanism for free shear flows at large Reynolds numbers. At small Reynolds numbers, a new instability mode is identified when the temporal instability of parallel viscous two fluid mixing layers is extended to current-fluid mud systems by considering a composite error function velocity profile. The new mode is caused by the large viscosity difference between the two fluids. This interfacial mode exists when the fluid mud boundary layer is sufficiently thin. Its performance is different from that of the Kelvin-Helmholtz mode. This mode has not yet been reported for interface instability problems with large viscosity contrasts. These results are essential for further stability analysis of flows relevant to the breaking up of this type of interface.
基金Project supported by the National Basic Research Program of China(Grant No.2011CBA00606)the National Natural Science Foundation of China(Grant No.61106106)the Fundamental Research Funds for the Central Universities,China(Grant No.K50511250008)
文摘The exponent n of the generation of an interface trap (Nit), which contributes to the power-law negative bias temperature instability (NBTI) degradation, and the exponent’s time evolution are investigated by simulations with varying the stress voltage Vg and temperature T. It is found that the exponent n in the diffusion-limited phase of the degradation process is irrelevant to both Vg and T. The time evolution of the exponent n is affected by the stress conditions, which is reflected in the shift of the onset of the diffusion-limited phase. According to the diffusion profiles, the generation of the atomic hydrogen species, which is equal to the buildup of Nit, is strongly correlated with the stress conditions, whereas the diffusion of the hydrogen species shows Vg-unaffected but T-affected relations through the normalized results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50971102 and 50901061)the National Basic Research Program of China (Grant No. 2011CB610402)+2 种基金the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China (Grant Nos. 02-TZ-2008 and 36-TP-2009)the Programme of Introducing Talents of Discipline to Universities,China (Grant No. 08040)the National Science Foundation for Post-doctoral Scientists of China(Grant No. 20110491689)
文摘The morphological stability of a planar interface with different crystallographic orientations is studied under a small positive temperature gradient using a transparent model alloy of succinonitrile. Novel experimental apparatus is constructed to provide a temperature gradient of about 0.37 K/mm. Under this small temperature gradient, the planar interface instability depends largely on the crystallographic orientation. It is shown experimentally that the effect of interfacial energy anisotropy on planar interface stability cannot be neglected even in a small temperature gradient system. Higher interfacial energy anisotropy leads the planar interface to become more unstable, which is different from the stabilizing effect of the interfacial energy on the planar interface. The experimental results are in agreement with previous theoretical calculations and phase field simulations.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB1802100)the Science Challenge Project,China(Grant No.TZ2018004)the National Natural Science Foundation of China(Grant Nos.61534007 and 11690042)。
文摘We investigate the instability of threshold voltage in D-mode MIS-HEMT with in-situ SiN as gate dielectric under different negative gate stresses.The complex non-monotonic evolution of threshold voltage under the negative stress and during the recovery process is induced by the combination effect of two mechanisms.The effect of trapping behavior of interface state at SiN/AlGaN interface and the effect of zener traps in AlGaN barrier layer on the threshold voltage instability are opposite to each other.The threshold voltage shifts negatively under the negative stress due to the detrapping of the electrons at SiN/AlGaN interface,and shifts positively due to zener trapping in AlGaN barrier layer.As the stress is removed,the threshold voltage shifts positively for the retrapping of interface states and negatively for the thermal detrapping in AlGaN.However,it is the trapping behavior in the AlGaN rather than the interface state that results in the change of transconductance in the D-mode MIS-HEMT.
文摘Interactions of shock wave and heavy gas cylinders with different diffusive interfaces are numerically investigated. Comparisons among these interfaces are made in terms of cylinder morphology, wave system evolution, fluids mixing, and circulation generation. Navier-Stokes equations are solved in the present work to simulate the complex multi-fluid flow. The fifth-order weighted essentially non-oscillatory scheme is used to compute the numerical flux. The influence of interface diffusion is revealed by the numerical results. The cylinders with similar geometric scale but different diffusion interface have great similarities in the hydrodynamic characteristics, including the interface morphology, shock focusing and molecular mixing, as well as circulation deposition. For the cases with more serious interface diffusion, the cylinder develops into more regular vortex pairs. The diffusive interface greatly mitigates the strength of the reflected shock wave and weakens the shock focusing capability. Some interface structural features are also recorded and analyzed. The diffusive interface brings about slower molecular mixing and less circulation generation. The circulation deposition on different interfaces is quantitatively investigated and compared with the theoretical models. The theoretical models are found to be applicable to the scenarios of diffusive interfaces.
文摘Some of the main progress on the investigation of the mechanism of the wave formation in explosive welding at the Institute of Mechanics is summarized and otters'previous works are re- viewed.Our systematic experiments and analysis do not substantiate the theory of wave formation based on Karman vortex-street analogy or Helmholtz instability.On the contrary,they show that materi- al strength insensitive to strain rate plays an important role.A simple hydro-plastic model is presented to explain the main features regarding the interracial wave formation and to estimate the magnitude of wave length.The result is in broad agreement with experiment.
基金Funded by the National Natural Science Foundation of China(Nos.11202093 and 11662010)
文摘The wavy interface for similar or the same metal explosive welding(EXW) and the universal mechanism of wavy interface formation in EXW were studied in this work. Based on a new established model, it was deduced that the evolution frequencies of the instability were constrained in a limited range. Then experiments of identical metal EXW were performed and welding interfaces were characterized for examining the final morphology. By calculating the fractal dimensions and multifractal spectra of welding interface, the fractal characteristics of interface were revealed and a quantitative description was achieved for EXW interface structure. Thus, the formation, evolution and final morphology of wavy interface were systemically researched.
基金the EU project(INCO-Copernicus,ERBIC 15 CT970706)Research Foundation for Youth Scientist of Northeastern University,Shenyang China(856049)
文摘The propagation of interlayer cracks and the resulting failure of the interface is a typical mode occurring in rock engineering and masonry structure. On the basis of the theory of elasto^plasticity and fracture mechanics, the shear beam model for the solution of interface failure was presented. The concept of `cohesive crack' was adopted to describe the constitutive behavior of the cohesive interfacial layer. Related fundamental equations such as equilibrium equation, constitutive equations were presented. The behavior of a double shear beam bonded through cohesive layer was analytically calculated. The stable propagation of interface crack and process zone was investigated.
文摘Based on the circuit principle of 1186 Electro Chemical Interface preduced by Solartron Electronic Group Ltd., a precise electro chemical interface (ECI) unit, which can provide the interfacing requirements for the control and measurement of characteristics of electro chemical cell, was developed by means of some essential improvements. Not only can it be used to control and measure the steady and non-steady state characteristics, but also it can be directly connected with Solartron 1170 series or 1250 Frequency Response Analysers (FRA) to measure the AC impedance. Besides,the EC1 can also be connected with two- or three-electrode electro chemical cell systems to test convenlently and correctly their DC and AC characteristics, and used as a four-electrode potentlostat combined with four-electrode electro chernical cell system which contains two reference electrodes (RES) for researches on the electro chemical characteristics of oil-water interface, etc.
基金supported by the National Natural Science Foundation of China (Grant 11372140)
文摘The instabilities of a three-dimensional sinusoidally premixed flame induced by an incident shock wave with Mach = 1.7 and its reshock waves were studied by using the Navier-Stokes (NS) equations with a single-step chemical reaction and a high resolution, 9th-order weighted essentially non-oscillatory scheme. The computational results were validated by the grid independence test and the experimental results in the literature. The computational results show that after the passage of incident shock wave the flame interface develops in symmetric structure accompanied by large-scale transverse vortex structures. After the interactions by successive reshock waves, the flame interface is gradually destabilized and broken up, and the large-scale vortex structures are gradually transformed into small-scale vortex structures. The small-scale vortices tend to be isotropic later. The results also reveal that the evolution of the flame interface is affected by both mixing process and chemical reaction. In order to identify the relationship between the mixing and the chemical reaction, a dimensionless parameter, , that is defined as the ratio of mixing time scale to chemical reaction time scale, is introduced. It is found that at each interaction stage the effect of chemical reaction is enhanced with time. The enhanced effect of chemical reaction at the interaction stage by incident shock wave is greater than that at the interaction stages by reshock waves. The result suggests that the parameter can reasonably character the features of flame interface development induced by the multiple shock waves.
文摘A program MVFT3D of large-eddy simulation is developed and performed to solve the multi compressible Navier- Stokes equations. The SGS dissipation and molecular viscosity dissipation have been analyzed, and the former is much larger than the later. Our test shows that the SGS dissipation of Vreman model is smaller than the Smagorinsky model. We mainly simulate the experiment of fluid instability of shock-accelerated interface by Poggi in this paper. The decay of the turbulent kinetic energy before the first reflected shock wave–mixing zone interaction and its strong enhancement by re-shocks are presented in our numerical simulations. The computational mixing zone width under double re-shock agreement well with the experiment, and the decaying law of the turbulent kinetic energy is consistent with Mohamed and Larue’s investigation. Also, by using MVFT3D we give some simulation results of the inverse Chevron model from AWE. The numerical simulations presented in this paper allow us to characterize and better understand the Richtmyer-Meshkov instability induced turbulence, and the code MVFT3D is validated.
基金Scientific Research Foundation for Youth! (856049) of Northeastern University, Shenyang, China.
文摘In this paper, the shear beam model for analysis of interface failure under joint action of anti-plane shearing and lateral compression and its principal behavior were briefly introduced. The calculation of energy release that is related to the strength of earthquake was presented by using the shear beam model. The sudden increase of load resulted from the 'stress locking' at the interface layer in the reloading process was investigated. At the end of the paper, discussions on the mechanism of earthquake were given out.