The nonlinear vector differential equation of the sixth order with constant delay is considered in this article. New criteria for instability of the zero solution are established using the Lyapunov-Krasovskii function...The nonlinear vector differential equation of the sixth order with constant delay is considered in this article. New criteria for instability of the zero solution are established using the Lyapunov-Krasovskii functional approach and the differential inequality techniques. The result of this article improves previously known results.展开更多
In the presented work, we consider applications of non-classical equations and their approaches to the solution of some classes of equations that arise in the Kelvin-Helmholtz Mechanism (KHM) and instability. In all a...In the presented work, we consider applications of non-classical equations and their approaches to the solution of some classes of equations that arise in the Kelvin-Helmholtz Mechanism (KHM) and instability. In all areas where the Kelvin-Helmholtz instability (KHI) problem is investigated with the corresponding data unchanged, the solution can be taken directly in a specific form (for example, to determine the horizontal structure of a perturbation in a barotropic rotational flow, which is a boundary condition taken, as well as other types of Kelvin-Helmholtz instability problems). In another example, the shear flow along the magnetic field in the Z direction, which is the width of the contact layer between fast and slow flows, has a velocity gradient along the X axis with wind shear. The most difficult problems arise when the above unmentioned equation has singularities simultaneously at points and in this case, our results also remain valid. In the case of linear wave analysis of Kelvin-Helmholtz instability (KHI) at a tangential discontinuity (TD) of ideal magneto-hydro-dynamic (MHD) plasma, it can be attributed to the presented class, and in this case, as far as we know, solutions for eigen modes of instability KH in MHD plasma that satisfy suitable homogeneous boundary conditions. Based on the above mentioned area of application for degenerating ordinary differential equations in this work, the method of functional analysis in order to prove the generalized solution is used. The investigated equation covers a class of a number of difficult-to-solve problems, namely, generalized solutions are found for classes of problems that have analytical and mathematical descriptions. With the aid of lemmas and theorems, the existence and uniqueness of generalized solutions in the weight space are proved, and then general and particular exact solutions are found for the considered problems that are expressed analytically explicitly. Obtained our results may be used for all the difficult-to-solve processes of KHM and instabilities and instabilities, which cover widely studied areas like galaxies, Kelvin-Helmholtz instability in the atmospheres of planets, oceans, clouds and moons, for example, during the formation of the Earth or the Red Spot on Jupiter, as well as in the atmospheres of the Sun and other stars. In this paper, also, a fairly common class of equations and examples are indicated that can be used directly to enter data for the use of the studied suitable tasks.展开更多
The object of the paper is to establish an instability theorem for seventh-order differential equations of the form (1.10). The proof is based on the use of Krasovskii criteria.
In this paper, we discuss the instability of the zero solutions to certain nonlinear differential equations of fifth and sixth order with multiple retarded arguments. By the Lyapunov's direct method, sufficient condi...In this paper, we discuss the instability of the zero solutions to certain nonlinear differential equations of fifth and sixth order with multiple retarded arguments. By the Lyapunov's direct method, sufficient conditions for instability of the zero solutions are obtained.展开更多
This paper considers a kind of seventh order nonlinear differential equations with a deviating argument.By means of the Lyapunov direct method,some sufficient conditions are established to show the instability of the ...This paper considers a kind of seventh order nonlinear differential equations with a deviating argument.By means of the Lyapunov direct method,some sufficient conditions are established to show the instability of the zero solution to the equation.Our result is new and complements the corresponding result of [5].展开更多
This paper presents a new result related to the instability of the zero solution to a nonlinear vector differential equation of fourth order.Our result includes and improves an instability result in the previous liter...This paper presents a new result related to the instability of the zero solution to a nonlinear vector differential equation of fourth order.Our result includes and improves an instability result in the previous literature,which is related to the instability of the zero solution to a nonlinear scalar differential equation of fourth order.展开更多
Our work pays much attention to the instability of an nth-order differential equation whose coefficients are not all constants, where n is an odd integer and n ≥ 3. Finally, we obtained a sufficient condition of the ...Our work pays much attention to the instability of an nth-order differential equation whose coefficients are not all constants, where n is an odd integer and n ≥ 3. Finally, we obtained a sufficient condition of the instability.展开更多
In this paper, an instability criteria for nonlinear ordinary vector differential equation (1.1) is given. The result extends and includes the results of previous authors in ([1], [27]).
We investigate under what conditions transient simulation could be used to integrate backward in time so that the initial field could be recovered from later histories. In this paper we use realistic examples and find...We investigate under what conditions transient simulation could be used to integrate backward in time so that the initial field could be recovered from later histories. In this paper we use realistic examples and find that, in long histories, traces of the initial field would be present only in the exact analytical solutions. We conclude that the recovery of initial field is possible only if the equations could be solved analytically or only short time periods are involved. In practice, it is not possible to detect those traces by measurements or observations. If numerical procedures are used, truncation and discretization errors are always present. Fine-tuning of system parameters used or transforming time into another pseudo time frame may allow numerical integration to be carried out backward in time. But numerical instability is still a problem. Large spurious increases found by numerical procedures are most likely due to numerical inaccuracy and instability.展开更多
The Milne-Simpson method is a two-step implicit linear multistep method for the numerical solution of ODEs that obtains the theoretically highest order of convergence for such a method. The stability region of the met...The Milne-Simpson method is a two-step implicit linear multistep method for the numerical solution of ODEs that obtains the theoretically highest order of convergence for such a method. The stability region of the method is only an interval on the imaginary axis and the method is classified as weakly stable which causes non-physical oscillations to appear in numerical solutions. For this reason, the method is seldom used in applications. This work examines filtering techniques that improve the stability properties of the Milne-Simpson method while retaining its fourth-order convergence rate. The resulting filtered Milne-Simpson method is attractive as a method of lines integrator of linear time-dependent partial differential equations.展开更多
The model of electrically driven jet is governed by a series of quasi 1D dimensionless partial differential equations(PDEs).Following the method of lines,the Chebyshev collocation method is employed to discretize the ...The model of electrically driven jet is governed by a series of quasi 1D dimensionless partial differential equations(PDEs).Following the method of lines,the Chebyshev collocation method is employed to discretize the PDEs and obtain a system of differential-algebraic equations(DAEs).By differentiating constrains in DAEs twice,the system is transformed into a set of ordinary differential equations(ODEs) with invariants.Then the implicit differential equations solver 'ddaskr' is used to solve the ODEs and post-stabilization is executed at the end of each step.Results show the distributions of radius,linear charge density,stretching ratio and also the horizontal velocity at a time point.Meanwhile,the spiral and expanding projections to X-Y plane of the jet centerline suggest the occurring of bending instability.展开更多
文摘The nonlinear vector differential equation of the sixth order with constant delay is considered in this article. New criteria for instability of the zero solution are established using the Lyapunov-Krasovskii functional approach and the differential inequality techniques. The result of this article improves previously known results.
文摘In the presented work, we consider applications of non-classical equations and their approaches to the solution of some classes of equations that arise in the Kelvin-Helmholtz Mechanism (KHM) and instability. In all areas where the Kelvin-Helmholtz instability (KHI) problem is investigated with the corresponding data unchanged, the solution can be taken directly in a specific form (for example, to determine the horizontal structure of a perturbation in a barotropic rotational flow, which is a boundary condition taken, as well as other types of Kelvin-Helmholtz instability problems). In another example, the shear flow along the magnetic field in the Z direction, which is the width of the contact layer between fast and slow flows, has a velocity gradient along the X axis with wind shear. The most difficult problems arise when the above unmentioned equation has singularities simultaneously at points and in this case, our results also remain valid. In the case of linear wave analysis of Kelvin-Helmholtz instability (KHI) at a tangential discontinuity (TD) of ideal magneto-hydro-dynamic (MHD) plasma, it can be attributed to the presented class, and in this case, as far as we know, solutions for eigen modes of instability KH in MHD plasma that satisfy suitable homogeneous boundary conditions. Based on the above mentioned area of application for degenerating ordinary differential equations in this work, the method of functional analysis in order to prove the generalized solution is used. The investigated equation covers a class of a number of difficult-to-solve problems, namely, generalized solutions are found for classes of problems that have analytical and mathematical descriptions. With the aid of lemmas and theorems, the existence and uniqueness of generalized solutions in the weight space are proved, and then general and particular exact solutions are found for the considered problems that are expressed analytically explicitly. Obtained our results may be used for all the difficult-to-solve processes of KHM and instabilities and instabilities, which cover widely studied areas like galaxies, Kelvin-Helmholtz instability in the atmospheres of planets, oceans, clouds and moons, for example, during the formation of the Earth or the Red Spot on Jupiter, as well as in the atmospheres of the Sun and other stars. In this paper, also, a fairly common class of equations and examples are indicated that can be used directly to enter data for the use of the studied suitable tasks.
文摘The object of the paper is to establish an instability theorem for seventh-order differential equations of the form (1.10). The proof is based on the use of Krasovskii criteria.
文摘In this paper, we discuss the instability of the zero solutions to certain nonlinear differential equations of fifth and sixth order with multiple retarded arguments. By the Lyapunov's direct method, sufficient conditions for instability of the zero solutions are obtained.
文摘This paper considers a kind of seventh order nonlinear differential equations with a deviating argument.By means of the Lyapunov direct method,some sufficient conditions are established to show the instability of the zero solution to the equation.Our result is new and complements the corresponding result of [5].
文摘This paper presents a new result related to the instability of the zero solution to a nonlinear vector differential equation of fourth order.Our result includes and improves an instability result in the previous literature,which is related to the instability of the zero solution to a nonlinear scalar differential equation of fourth order.
文摘Our work pays much attention to the instability of an nth-order differential equation whose coefficients are not all constants, where n is an odd integer and n ≥ 3. Finally, we obtained a sufficient condition of the instability.
文摘In this paper, an instability criteria for nonlinear ordinary vector differential equation (1.1) is given. The result extends and includes the results of previous authors in ([1], [27]).
文摘We investigate under what conditions transient simulation could be used to integrate backward in time so that the initial field could be recovered from later histories. In this paper we use realistic examples and find that, in long histories, traces of the initial field would be present only in the exact analytical solutions. We conclude that the recovery of initial field is possible only if the equations could be solved analytically or only short time periods are involved. In practice, it is not possible to detect those traces by measurements or observations. If numerical procedures are used, truncation and discretization errors are always present. Fine-tuning of system parameters used or transforming time into another pseudo time frame may allow numerical integration to be carried out backward in time. But numerical instability is still a problem. Large spurious increases found by numerical procedures are most likely due to numerical inaccuracy and instability.
文摘The Milne-Simpson method is a two-step implicit linear multistep method for the numerical solution of ODEs that obtains the theoretically highest order of convergence for such a method. The stability region of the method is only an interval on the imaginary axis and the method is classified as weakly stable which causes non-physical oscillations to appear in numerical solutions. For this reason, the method is seldom used in applications. This work examines filtering techniques that improve the stability properties of the Milne-Simpson method while retaining its fourth-order convergence rate. The resulting filtered Milne-Simpson method is attractive as a method of lines integrator of linear time-dependent partial differential equations.
基金supported by the National Natural Science Foundation of China(10772136)Shanghai Leading Academic Discipline Project(B302)The authors wish to thank Dr.Guyue Jiao for the literary suggestions on the manuscript
文摘The model of electrically driven jet is governed by a series of quasi 1D dimensionless partial differential equations(PDEs).Following the method of lines,the Chebyshev collocation method is employed to discretize the PDEs and obtain a system of differential-algebraic equations(DAEs).By differentiating constrains in DAEs twice,the system is transformed into a set of ordinary differential equations(ODEs) with invariants.Then the implicit differential equations solver 'ddaskr' is used to solve the ODEs and post-stabilization is executed at the end of each step.Results show the distributions of radius,linear charge density,stretching ratio and also the horizontal velocity at a time point.Meanwhile,the spiral and expanding projections to X-Y plane of the jet centerline suggest the occurring of bending instability.