A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input d...A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input data in accordance with the groups of output data.Then,a set of prototypes are selected from the clustered input data.The inessential data can be ultimately discarded from the data set.The proposed method can reduce the effect from outliers because only the prototypes are used.This method is applied to reduce the data set in regression problems.Two standard synthetic data sets and three standard real-world data sets are used for evaluation.The root-mean-square errors are compared from support vector regression models trained with the original data sets and the corresponding instance-reduced data sets.From the experiments,the proposed method provides good results on the reduction and the reconstruction of the standard synthetic and real-world data sets.The numbers of instances of the synthetic data sets are decreased by 25%-69%.The reduction rates for the real-world data sets of the automobile miles per gallon and the 1990 census in CA are 46% and 57%,respectively.The reduction rate of 96% is very good for the electrocardiogram(ECG) data set because of the redundant and periodic nature of ECG signals.For all of the data sets,the regression results are similar to those from the corresponding original data sets.Therefore,the regression performance of the proposed method is good while only a fraction of the data is needed in the training process.展开更多
Association rules’learning is a machine learning method used in finding underlying associations in large datasets.Whether intentionally or unintentionally present,noise in training instances causes overfitting while ...Association rules’learning is a machine learning method used in finding underlying associations in large datasets.Whether intentionally or unintentionally present,noise in training instances causes overfitting while building the classifier and negatively impacts classification accuracy.This paper uses instance reduction techniques for the datasets before mining the association rules and building the classifier.Instance reduction techniques were originally developed to reduce memory requirements in instance-based learning.This paper utilizes them to remove noise from the dataset before training the association rules classifier.Extensive experiments were conducted to assess the accuracy of association rules with different instance reduction techniques,namely:DecrementalReduction Optimization Procedure(DROP)3,DROP5,ALL K-Nearest Neighbors(ALLKNN),Edited Nearest Neighbor(ENN),and Repeated Edited Nearest Neighbor(RENN)in different noise ratios.Experiments show that instance reduction techniques substantially improved the average classification accuracy on three different noise levels:0%,5%,and 10%.The RENN algorithm achieved the highest levels of accuracy with a significant improvement on seven out of eight used datasets from the University of California Irvine(UCI)machine learning repository.The improvements were more apparent in the 5%and the 10%noise cases.When RENN was applied,the average classification accuracy for the eight datasets in the zero-noise test enhanced from 70.47%to 76.65%compared to the original test.The average accuracy was improved from 66.08%to 77.47%for the 5%-noise case and from 59.89%to 77.59%in the 10%-noise case.Higher confidence was also reported in building the association rules when RENN was used.The above results indicate that RENN is a good solution in removing noise and avoiding overfitting during the construction of the association rules classifier,especially in noisy domains.展开更多
基金supported by Chiang Mai University Research Fund under the contract number T-M5744
文摘A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input data in accordance with the groups of output data.Then,a set of prototypes are selected from the clustered input data.The inessential data can be ultimately discarded from the data set.The proposed method can reduce the effect from outliers because only the prototypes are used.This method is applied to reduce the data set in regression problems.Two standard synthetic data sets and three standard real-world data sets are used for evaluation.The root-mean-square errors are compared from support vector regression models trained with the original data sets and the corresponding instance-reduced data sets.From the experiments,the proposed method provides good results on the reduction and the reconstruction of the standard synthetic and real-world data sets.The numbers of instances of the synthetic data sets are decreased by 25%-69%.The reduction rates for the real-world data sets of the automobile miles per gallon and the 1990 census in CA are 46% and 57%,respectively.The reduction rate of 96% is very good for the electrocardiogram(ECG) data set because of the redundant and periodic nature of ECG signals.For all of the data sets,the regression results are similar to those from the corresponding original data sets.Therefore,the regression performance of the proposed method is good while only a fraction of the data is needed in the training process.
基金The APC was funded by the Deanship of Scientific Research,Saudi Electronic University.
文摘Association rules’learning is a machine learning method used in finding underlying associations in large datasets.Whether intentionally or unintentionally present,noise in training instances causes overfitting while building the classifier and negatively impacts classification accuracy.This paper uses instance reduction techniques for the datasets before mining the association rules and building the classifier.Instance reduction techniques were originally developed to reduce memory requirements in instance-based learning.This paper utilizes them to remove noise from the dataset before training the association rules classifier.Extensive experiments were conducted to assess the accuracy of association rules with different instance reduction techniques,namely:DecrementalReduction Optimization Procedure(DROP)3,DROP5,ALL K-Nearest Neighbors(ALLKNN),Edited Nearest Neighbor(ENN),and Repeated Edited Nearest Neighbor(RENN)in different noise ratios.Experiments show that instance reduction techniques substantially improved the average classification accuracy on three different noise levels:0%,5%,and 10%.The RENN algorithm achieved the highest levels of accuracy with a significant improvement on seven out of eight used datasets from the University of California Irvine(UCI)machine learning repository.The improvements were more apparent in the 5%and the 10%noise cases.When RENN was applied,the average classification accuracy for the eight datasets in the zero-noise test enhanced from 70.47%to 76.65%compared to the original test.The average accuracy was improved from 66.08%to 77.47%for the 5%-noise case and from 59.89%to 77.59%in the 10%-noise case.Higher confidence was also reported in building the association rules when RENN was used.The above results indicate that RENN is a good solution in removing noise and avoiding overfitting during the construction of the association rules classifier,especially in noisy domains.