The intersection point of the characteristic magnetic field line(CMFL) crossing the anode boundary with the discharge channel wall, and its influence on thruster performance and the energy and flux of ions bombardin...The intersection point of the characteristic magnetic field line(CMFL) crossing the anode boundary with the discharge channel wall, and its influence on thruster performance and the energy and flux of ions bombarding the channel wall, have been studied numerically. The simulation results demonstrate that with the increase in distance from the crossover point of the CMFL with the channel wall to the bottom of the thruster channel, the ionization rate in the discharge channel gradually increases; meanwhile, the ion energy and ion current density bombarding the channel wall decreases. When the point of the CMFL with the channel wall is at the channel outlet, the thrust, specific impulse, and efficiency are at a maximum, while the ion energy and ion current density bombarding the channel wall are at a minimum. Therefore, to improve the performance and lifetime of the thruster, it is important to control the point of intersection of the CMFL with the channel wall.展开更多
Abstract The magnetically insulated line oscillator (MILO) is a gigawatt-class, coaxial crossed-field microwave tube, which is at present a major hotspot in the field of high-power mi- crowaves (HPM) research. In ...Abstract The magnetically insulated line oscillator (MILO) is a gigawatt-class, coaxial crossed-field microwave tube, which is at present a major hotspot in the field of high-power mi- crowaves (HPM) research. In order to improve the power conversion efficiency and eliminate or at least minimize anode plasma formation in the load region and radio frequency (RF) breakdown in the slow wave structure (SWS) section, an X-band MILO is presented and inyestigated nu- merically with KARAT code. The design idea is briefly presented and the simulation results are given and discussed. In the simulation, HPM is generated with peak power of 3.4 GW, maximum electric field of about 1 MV/cm, and peak power conversion efficiency of 14.0%, when the voltage is 559.1 kV and the current is 43.2 kA. The microwave frequency is pure and falls in the X-band of 9.0 GHz. The theoretical investigation and the simulation results are given to prove that the anode plasma formation and the RF breakdown can be effectively avoided or at least minimized, respectively.展开更多
基金financially supported by National Natural Science Foundation of China(Grant Nos.51777045 and51477035)Shenzhen Technology Project(Project Nos.JCYJ20160226201347750 and JCYJ20150529115038093)
文摘The intersection point of the characteristic magnetic field line(CMFL) crossing the anode boundary with the discharge channel wall, and its influence on thruster performance and the energy and flux of ions bombarding the channel wall, have been studied numerically. The simulation results demonstrate that with the increase in distance from the crossover point of the CMFL with the channel wall to the bottom of the thruster channel, the ionization rate in the discharge channel gradually increases; meanwhile, the ion energy and ion current density bombarding the channel wall decreases. When the point of the CMFL with the channel wall is at the channel outlet, the thrust, specific impulse, and efficiency are at a maximum, while the ion energy and ion current density bombarding the channel wall are at a minimum. Therefore, to improve the performance and lifetime of the thruster, it is important to control the point of intersection of the CMFL with the channel wall.
基金supported by National Natural Science Foundation of China(No.11075210)the Special Financial Grant from the China Postdoctoral Science Foundation(No.201104761)
文摘Abstract The magnetically insulated line oscillator (MILO) is a gigawatt-class, coaxial crossed-field microwave tube, which is at present a major hotspot in the field of high-power mi- crowaves (HPM) research. In order to improve the power conversion efficiency and eliminate or at least minimize anode plasma formation in the load region and radio frequency (RF) breakdown in the slow wave structure (SWS) section, an X-band MILO is presented and inyestigated nu- merically with KARAT code. The design idea is briefly presented and the simulation results are given and discussed. In the simulation, HPM is generated with peak power of 3.4 GW, maximum electric field of about 1 MV/cm, and peak power conversion efficiency of 14.0%, when the voltage is 559.1 kV and the current is 43.2 kA. The microwave frequency is pure and falls in the X-band of 9.0 GHz. The theoretical investigation and the simulation results are given to prove that the anode plasma formation and the RF breakdown can be effectively avoided or at least minimized, respectively.