A novel silicon carbide gate-controlled bipolar field effect composite transistor with poly silicon region(SiC GCBTP)is proposed.Different from the traditional electrode connection mode of SiC vertical diffused MOS(VD...A novel silicon carbide gate-controlled bipolar field effect composite transistor with poly silicon region(SiC GCBTP)is proposed.Different from the traditional electrode connection mode of SiC vertical diffused MOS(VDMOS),the P+region of P-well is connected with the gate in SiC GCBTP,and the polysilicon region is added between the P+region and the gate.By this method,additional minority carriers can be injected into the drift region at on-state,and the distribution of minority carriers in the drift region will be optimized,so the on-state current is increased.In terms of static characteristics,it has the same high breakdown voltage(811 V)as SiC VDMOS whose length of drift is 5.5μm.The on-state current of SiC GCBTP is 2.47×10^(-3)A/μm(V_(G)=10 V,V_(D)=10 V)which is 5.7 times of that of SiC IGBT and 36.4 times of that of SiC VDMOS.In terms of dynamic characteristics,the turn-on time of SiC GCBTP is only 0.425 ns.And the turn-off time of SiC GCBTP is similar to that of SIC insulated gate bipolar transistor(IGBT),which is 114.72 ns.展开更多
A novel lateral insulated gate bipolar transistor on a silicon-on-insulator substrate SOI-LIGBT with a special low-doped P-well structure is proposed.The P-well structure is added to attach the P-body under the channe...A novel lateral insulated gate bipolar transistor on a silicon-on-insulator substrate SOI-LIGBT with a special low-doped P-well structure is proposed.The P-well structure is added to attach the P-body under the channel so as to reduce the linear anode current degradation without additional process.The influence of the length and depth of the P-well on the hot-carrier HC reliability of the SOI-LIGBT is studied.With the increase in the length of the P-well the perpendicular electric field peak and the impact ionization peak diminish resulting in the reduction of the hot-carrier degradation. In addition the impact ionization will be weakened with the increase in the depth of the P-well which also makes the hot-carrier degradation decrease.Considering the effect of the low-doped P-well and the process windows the length and depth of the P-well are both chosen as 2 μm.展开更多
Based on the construction of the 8-inch fabricat ion line, advanced process technology of 8-inch wafer, as well as the fourth-generation high-voltage double-diffused metal-oxide semiconductor(DMOS+) insulated-gate bip...Based on the construction of the 8-inch fabricat ion line, advanced process technology of 8-inch wafer, as well as the fourth-generation high-voltage double-diffused metal-oxide semiconductor(DMOS+) insulated-gate bipolar transistor(IGBT) technology and the fifth-generation trench gate IGBT technology, have been developed, realizing a great-leap forward technological development for the manufacturing of high-voltage IGBT from 6-inch to 8-inch. The 1600 A/1.7 kV and 1500 A/3.3 kV IGBT modules have been successfully fabricated, qualified, and applied in rail transportation traction system.展开更多
In this paper, a novel dual-gate and dielectric-inserted lateral trench insulated gate bipolar transistor (DGDI LTIGBT) structure, which features a double extended trench gate and a dielectric inserted in the drift ...In this paper, a novel dual-gate and dielectric-inserted lateral trench insulated gate bipolar transistor (DGDI LTIGBT) structure, which features a double extended trench gate and a dielectric inserted in the drift region, is proposed and discussed. The device can not only decrease the specific on-resistance Ron,sp , but also simultaneously improve the temperature performance. Simulation results show that the proposed LTIGBT achieves an ultra-low on-state voltage drop of 1.31 V at 700 A·cm-2 with a small half-cell pitch of 10.5 μm, a specific on-resistance R on,sp of 187 mΩ·mm2, and a high breakdown voltage of 250 V. The on-state voltage drop of the DGDI LTIGBT is 18% less than that of the DI LTIGBT and 30.3% less than that of the conventional LTIGBT. The proposed LTIGBT exhibits a good positive temperature coefficient for safety paralleling to handling larger currents and enhances the short-circuit capability while maintaining a low self-heating effect. Furthermore, it also shows a better tradeoff between the specific on-resistance and the turnoff loss, although it has a longer turnoff delay time.展开更多
This paper introduces the Insulated gate bipolar transistor(IGBT)in- verter for arc welding.The principle of the inverter,the structure and charac- teristics of IGBT and the current feedback system using LEM current t...This paper introduces the Insulated gate bipolar transistor(IGBT)in- verter for arc welding.The principle of the inverter,the structure and charac- teristics of IGBT and the current feedback system using LEM current transduc- er are discussed.By the measurement of its efficiency and power factor and the tests of welding processes,the developed 150A IGBT inverter proves to be a kind of energy-saving portable power supply for arc welding with broad prospects.展开更多
A high voltage(〉 600 V) integrable silicon-on-insulator(SOI) trench-type lateral insulated gate bipolar transistor(LIGBT) with a reduced cell-pitch is proposed.The LIGBT features multiple trenches(MTs):two o...A high voltage(〉 600 V) integrable silicon-on-insulator(SOI) trench-type lateral insulated gate bipolar transistor(LIGBT) with a reduced cell-pitch is proposed.The LIGBT features multiple trenches(MTs):two oxide trenches in the drift region and a trench gate extended to the buried oxide(BOX).Firstly,the oxide trenches enhance electric field strength because of the lower permittivity of oxide than that of Si.Secondly,oxide trenches bring in multi-directional depletion,leading to a reshaped electric field distribution and an enhanced reduced-surface electric-field(RESURF) effect.Both increase the breakdown voltage(BV).Thirdly,oxide trenches fold the drift region around the oxide trenches,leading to a reduced cell-pitch.Finally,the oxide trenches enhance the conductivity modulation,resulting in a high electron/hole concentration in the drift region as well as a low forward voltage drop(Von).The oxide trenches cause a low anode-cathode capacitance,which increases the switching speed and reduces the turn-off energy loss(Eoff).The MT SOI LIGBT exhibits a BV of 603 V at a small cell-pitch of 24 μm,a Von of 1.03 V at 100 A/cm-2,a turn-off time of 250 ns and Eoff of 4.1×10?3 mJ.The trench gate extended to BOX synchronously acts as dielectric isolation between high voltage LIGBT and low voltage circuits,simplifying the fabrication processes.展开更多
A novel trench insulated gate bipolar transistor(IGBT) with improved dynamic characteristics is proposed and investigated. The poly gate and poly emitter of the proposed IGBT are arranged alternately along the trench....A novel trench insulated gate bipolar transistor(IGBT) with improved dynamic characteristics is proposed and investigated. The poly gate and poly emitter of the proposed IGBT are arranged alternately along the trench. A self-biased p-MOSFET is formed on the emitter side. Owing to this unique three-dimensional(3D) trench architecture, both the turnoff characteristic and the turn-on characteristic can be greatly improved. At the turn-off moment, the maximum electric field and impact ionization rate of the proposed IGBT decrease and the dynamic avalanche(DA) is suppressed. Comparing with the carrier-stored trench gate bipolar transistor(CSTBT), the turn-off loss(E_(off)) of the proposed IGBT also decreases by 31% at the same ON-state voltage. At the turn-on moment, the built-in p-MOSFET reduces the reverse displacement current(I_(G_dis)), which is conducive to lowing dI_(C)/d_(t). As a result, compared with the CSTBT with the same turn-on loss(E_(on)), at I_(C) = 20 A/cm^(2), the proposed IGBT decreases by 35% of collector surge current(I_(surge)) and 52% of dI_(C)/d_(t).展开更多
基金Project supported in part by the Science Foundation for Distinguished Young Scholars of Shaanxi Province,China(Grant No.2018JC-017)111 Project(Grant No.B12026)。
文摘A novel silicon carbide gate-controlled bipolar field effect composite transistor with poly silicon region(SiC GCBTP)is proposed.Different from the traditional electrode connection mode of SiC vertical diffused MOS(VDMOS),the P+region of P-well is connected with the gate in SiC GCBTP,and the polysilicon region is added between the P+region and the gate.By this method,additional minority carriers can be injected into the drift region at on-state,and the distribution of minority carriers in the drift region will be optimized,so the on-state current is increased.In terms of static characteristics,it has the same high breakdown voltage(811 V)as SiC VDMOS whose length of drift is 5.5μm.The on-state current of SiC GCBTP is 2.47×10^(-3)A/μm(V_(G)=10 V,V_(D)=10 V)which is 5.7 times of that of SiC IGBT and 36.4 times of that of SiC VDMOS.In terms of dynamic characteristics,the turn-on time of SiC GCBTP is only 0.425 ns.And the turn-off time of SiC GCBTP is similar to that of SIC insulated gate bipolar transistor(IGBT),which is 114.72 ns.
基金The National Natural Science Foundation of China(No.61204083)the Natural Science Foundation of Jiangsu Province(No.BK2011059)the Program for New Century Excellent Talents in University(No.NCET-10-0331)
文摘A novel lateral insulated gate bipolar transistor on a silicon-on-insulator substrate SOI-LIGBT with a special low-doped P-well structure is proposed.The P-well structure is added to attach the P-body under the channel so as to reduce the linear anode current degradation without additional process.The influence of the length and depth of the P-well on the hot-carrier HC reliability of the SOI-LIGBT is studied.With the increase in the length of the P-well the perpendicular electric field peak and the impact ionization peak diminish resulting in the reduction of the hot-carrier degradation. In addition the impact ionization will be weakened with the increase in the depth of the P-well which also makes the hot-carrier degradation decrease.Considering the effect of the low-doped P-well and the process windows the length and depth of the P-well are both chosen as 2 μm.
文摘Based on the construction of the 8-inch fabricat ion line, advanced process technology of 8-inch wafer, as well as the fourth-generation high-voltage double-diffused metal-oxide semiconductor(DMOS+) insulated-gate bipolar transistor(IGBT) technology and the fifth-generation trench gate IGBT technology, have been developed, realizing a great-leap forward technological development for the manufacturing of high-voltage IGBT from 6-inch to 8-inch. The 1600 A/1.7 kV and 1500 A/3.3 kV IGBT modules have been successfully fabricated, qualified, and applied in rail transportation traction system.
基金the Major Program of the National Natural Science Foundation of China(Grant No.2009ZX02305-006)the National Natural Science Foundation of China(Grant No.61076082)
文摘In this paper, a novel dual-gate and dielectric-inserted lateral trench insulated gate bipolar transistor (DGDI LTIGBT) structure, which features a double extended trench gate and a dielectric inserted in the drift region, is proposed and discussed. The device can not only decrease the specific on-resistance Ron,sp , but also simultaneously improve the temperature performance. Simulation results show that the proposed LTIGBT achieves an ultra-low on-state voltage drop of 1.31 V at 700 A·cm-2 with a small half-cell pitch of 10.5 μm, a specific on-resistance R on,sp of 187 mΩ·mm2, and a high breakdown voltage of 250 V. The on-state voltage drop of the DGDI LTIGBT is 18% less than that of the DI LTIGBT and 30.3% less than that of the conventional LTIGBT. The proposed LTIGBT exhibits a good positive temperature coefficient for safety paralleling to handling larger currents and enhances the short-circuit capability while maintaining a low self-heating effect. Furthermore, it also shows a better tradeoff between the specific on-resistance and the turnoff loss, although it has a longer turnoff delay time.
文摘This paper introduces the Insulated gate bipolar transistor(IGBT)in- verter for arc welding.The principle of the inverter,the structure and charac- teristics of IGBT and the current feedback system using LEM current transduc- er are discussed.By the measurement of its efficiency and power factor and the tests of welding processes,the developed 150A IGBT inverter proves to be a kind of energy-saving portable power supply for arc welding with broad prospects.
基金Projects supported by the National Natural Science Foundation of China (Grant No. 61176069)the State Key Laboratory of Electronic Thin Films and Integrated Devices,China (Grant No. CXJJ201004)the National Key Laboratory of Analog Integrated Circuit,China (Grant No. 9140C090304110C0905)
文摘A high voltage(〉 600 V) integrable silicon-on-insulator(SOI) trench-type lateral insulated gate bipolar transistor(LIGBT) with a reduced cell-pitch is proposed.The LIGBT features multiple trenches(MTs):two oxide trenches in the drift region and a trench gate extended to the buried oxide(BOX).Firstly,the oxide trenches enhance electric field strength because of the lower permittivity of oxide than that of Si.Secondly,oxide trenches bring in multi-directional depletion,leading to a reshaped electric field distribution and an enhanced reduced-surface electric-field(RESURF) effect.Both increase the breakdown voltage(BV).Thirdly,oxide trenches fold the drift region around the oxide trenches,leading to a reduced cell-pitch.Finally,the oxide trenches enhance the conductivity modulation,resulting in a high electron/hole concentration in the drift region as well as a low forward voltage drop(Von).The oxide trenches cause a low anode-cathode capacitance,which increases the switching speed and reduces the turn-off energy loss(Eoff).The MT SOI LIGBT exhibits a BV of 603 V at a small cell-pitch of 24 μm,a Von of 1.03 V at 100 A/cm-2,a turn-off time of 250 ns and Eoff of 4.1×10?3 mJ.The trench gate extended to BOX synchronously acts as dielectric isolation between high voltage LIGBT and low voltage circuits,simplifying the fabrication processes.
基金Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 2023JJ40161)the Natural Science Foundation of Changsha, China (Grant No. kq2202163)+1 种基金the National Natural Science Foundation of China (Grant No. U21A20499)the Fundamental Research Funds for the Central Universities, China (Grant No. 531118010735)。
文摘A novel trench insulated gate bipolar transistor(IGBT) with improved dynamic characteristics is proposed and investigated. The poly gate and poly emitter of the proposed IGBT are arranged alternately along the trench. A self-biased p-MOSFET is formed on the emitter side. Owing to this unique three-dimensional(3D) trench architecture, both the turnoff characteristic and the turn-on characteristic can be greatly improved. At the turn-off moment, the maximum electric field and impact ionization rate of the proposed IGBT decrease and the dynamic avalanche(DA) is suppressed. Comparing with the carrier-stored trench gate bipolar transistor(CSTBT), the turn-off loss(E_(off)) of the proposed IGBT also decreases by 31% at the same ON-state voltage. At the turn-on moment, the built-in p-MOSFET reduces the reverse displacement current(I_(G_dis)), which is conducive to lowing dI_(C)/d_(t). As a result, compared with the CSTBT with the same turn-on loss(E_(on)), at I_(C) = 20 A/cm^(2), the proposed IGBT decreases by 35% of collector surge current(I_(surge)) and 52% of dI_(C)/d_(t).