Thermal protection systems are very essential for high temperature thermal conductivity measurement system to reduce the heat loss to environment at the range of 600-1800 K. A compound multi-layer insulations structur...Thermal protection systems are very essential for high temperature thermal conductivity measurement system to reduce the heat loss to environment at the range of 600-1800 K. A compound multi-layer insulations structure which composed of inner carbon fibrous materials and outer alternately arranged alumina fibrous materials and high reflectivity foils is proposed for use in high temperature cylinder thermal protection systems. A coupled conductive and radiation governing equations is presented for heat transfer analysis of the structure. The finite volume method and the discrete ordinate method are used to solve the goveming equations. The optimization structure of the compound multi-layer insulations is investigated by considering the pressure of the gas, the density of the carbon fibrous materials, the density of the alumina fibrous materials, the number of reflective foil layers and the emissivity of reflective foils. The results show that the compound structure has the best thermal insulation performance when the pressure of the gas is below 0.01 kPa, the density of carbon fibrous materials is 180 kg m^-3, the density of alumina fibrous materials is 256 kg m^-3 and the number of reflective foil layers is 39. In addition, the thermal insulation performance is much better when the emissivity of reflective foils is lower.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51225602)
文摘Thermal protection systems are very essential for high temperature thermal conductivity measurement system to reduce the heat loss to environment at the range of 600-1800 K. A compound multi-layer insulations structure which composed of inner carbon fibrous materials and outer alternately arranged alumina fibrous materials and high reflectivity foils is proposed for use in high temperature cylinder thermal protection systems. A coupled conductive and radiation governing equations is presented for heat transfer analysis of the structure. The finite volume method and the discrete ordinate method are used to solve the goveming equations. The optimization structure of the compound multi-layer insulations is investigated by considering the pressure of the gas, the density of the carbon fibrous materials, the density of the alumina fibrous materials, the number of reflective foil layers and the emissivity of reflective foils. The results show that the compound structure has the best thermal insulation performance when the pressure of the gas is below 0.01 kPa, the density of carbon fibrous materials is 180 kg m^-3, the density of alumina fibrous materials is 256 kg m^-3 and the number of reflective foil layers is 39. In addition, the thermal insulation performance is much better when the emissivity of reflective foils is lower.