In order to improve the mechanical properties of SiO_2 aerogel-glass fiber composites, effects of different solvents(cyclohexane, n-hexane, ethanol, acetone) and different dispersing modes(planetary ball milling, ultr...In order to improve the mechanical properties of SiO_2 aerogel-glass fiber composites, effects of different solvents(cyclohexane, n-hexane, ethanol, acetone) and different dispersing modes(planetary ball milling, ultrasonic dispersion and mechanical stirring) and dispersing duration(10-40 min) on the dispersion of chopped alkali-free glass fiber bundles were studied to determine the best dispersion process. On this basis, the materials were batched according to the mass fraction of SiO_2 aerogel powder to chopped alkali free glass fiber bundles of 90:10, and a certain amount of zinc oxide light-screening agent and phenolic resin binder were added. SiO_2 aerogel glass fiber composite specimens were prepared by direct adding chopped alkali free glass fiber bundles and pre-dispersed chopped alkali free glass fiber bundles, respectively. The cold crushing strength and the thermal conductivity at different surface temperatures(300, 400, 500 and 600 ℃, respectively)of the specimens were measured. The results show that:(1) the optimum dispersion process of chopped alkali-free glass fiber bundles is using ethanol as solvent and mechanical stirring for 30 min;(2) pre-dispersion of chopped alkali-free glass fiber bundles has little effect on the thermal conductivity of SiO_2 aerogel-glass fiber composites but can improve the cold crushing strength.展开更多
The nanoporous thermal insulating material was prepared by using fumed silica,SiC powder and glass fiber as starting materials,the appropriate thickness of the nanoporous thermal insulating material lined in ladle was...The nanoporous thermal insulating material was prepared by using fumed silica,SiC powder and glass fiber as starting materials,the appropriate thickness of the nanoporous thermal insulating material lined in ladle was discussed by the simulation method,and the effect of its application as ladle lining was investigated.The results show that the thermal conductivity of the nanoporous thermal insulating material prepared in composition of fumed silica: SiC powder: glass fiber =75: 20:5 (in mass) is 0.023 W · m^-1 · K^-1 at 1 000 ℃,the appropriate thickness of the nanoporous thermal insulating material lined in ladle is ≤ 5 mm and the average temperature of the ladle outside surface when lined with the nanoporous thermal insulating material is 95 ℃ lower than that with the ordinary thermal insulating material.展开更多
A hollow glass microsphere(HGM)/TiO2 composite hollow sphere was successfully prepared via a simple precipitation method.The TiO2 coating layers grew on the surface of the HGMs that range from 20 to 50μm in diameter ...A hollow glass microsphere(HGM)/TiO2 composite hollow sphere was successfully prepared via a simple precipitation method.The TiO2 coating layers grew on the surface of the HGMs that range from 20 to 50μm in diameter as nanoparticles with the formation of the SiO Ti bonds.The growth mechanism accounting for the formation of the TiO2 nanolayers was proposed.The morphology,composition,thermal insulation properties,and visible-near infrared(VIS-NIR)refl ectance of the HGMs/TiO2 composite hollow spheres were characterized.The VIS-NIR reflectance of the HGMs/TiO2 composite hollow spheres increased by more than 30%compared to raw HGMs.The thermal conductivity of the particles is 0.058 W/(m K).The result indicates that the VIS-NIR reflectance of the composite hollow spheres is strongly influenced by the coating of TiO2.The composite hollow spheres were used as the main functional filler to prepare the organic-inorganic composite coatings.The glass substrates coated by the organic-inorganic coatings had lower thermal conductivity and higher near infrared reflectivity.Therefore,the HGMs/TiO2 composite hollow spheres can reflect most of the solar energy and effectively keep out the heat as a thermal insulation coating for energy-saving constructions.展开更多
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability...Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.展开更多
As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime ca...As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime candidate for reinforcement. This woody plant offers inherent strengths, biodegradability, and abundant availability. Due to its high cellulose content, its low thermal conductivity establishes bamboo as a thermally resistant material. Its low thermal conductivity, enhanced by a NaOH solution treatment, makes it an excellent thermally resistant material. Researchers incorporated Hollow Glass Microspheres (HGM) and Kaolin fillers into the epoxy matrix to improve the insulating properties of bamboo composites. These fillers substantially enhance thermal resistance, limiting heat transfer. Various compositions, like (30% HGM + 25% Bamboo + 65% Epoxy) and (30% Kaolin + 25% Bamboo + 45% Epoxy), were compared to identify the most efficient thermal insulator. Using Vacuum Assisted Resin Transfer Molding (VARTM) ensures uniform distribution of fillers and resin, creating a structurally sound thermal barrier. These reinforced composites, evaluated using the TOPSIS method, demonstrated their potential as high-performance materials combating heat transfer, offering a promising solution in the battle against climate change.展开更多
As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC ae...As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC aerogels were successfully prepared by using water glass as the silicon source.Specifically,the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process,and the effect on SiC aerogel microwave absorption properties was investigated.The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity,with a minimum reflection loss value of-46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz.They also have good physical properties,such as the density of0.0444 g/cm^(3),the thermal conductivity of 0.0621 W/(m·K),and the specific surface area of 1099 m^(2)/g.These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers.展开更多
We want to conclude on the interest of the “crimping” process used to produce the glass wool and to make a comparison for anisotropic factor obtained from structural property (air permeability) as well as thermal pr...We want to conclude on the interest of the “crimping” process used to produce the glass wool and to make a comparison for anisotropic factor obtained from structural property (air permeability) as well as thermal property (thermal conductivity and diffusivity). The main structural (densities, porosity, specific surface, air permeability) and the thermal (conductivity, diffusivity, heat capacity) characteristics of this glass wool are presented. Thermal results are determined by using several methods (Hot disc (HD), Heat Flow Meter (HFM) and Guarded Hot Plate).展开更多
基金financial supports from the National Key R&D Program of China (2016YFB0601301 and 2018YFB0605904)The National Natural Science Foundation of China (51672256)Henan Science and Technology Research Program (162102210343)
文摘In order to improve the mechanical properties of SiO_2 aerogel-glass fiber composites, effects of different solvents(cyclohexane, n-hexane, ethanol, acetone) and different dispersing modes(planetary ball milling, ultrasonic dispersion and mechanical stirring) and dispersing duration(10-40 min) on the dispersion of chopped alkali-free glass fiber bundles were studied to determine the best dispersion process. On this basis, the materials were batched according to the mass fraction of SiO_2 aerogel powder to chopped alkali free glass fiber bundles of 90:10, and a certain amount of zinc oxide light-screening agent and phenolic resin binder were added. SiO_2 aerogel glass fiber composite specimens were prepared by direct adding chopped alkali free glass fiber bundles and pre-dispersed chopped alkali free glass fiber bundles, respectively. The cold crushing strength and the thermal conductivity at different surface temperatures(300, 400, 500 and 600 ℃, respectively)of the specimens were measured. The results show that:(1) the optimum dispersion process of chopped alkali-free glass fiber bundles is using ethanol as solvent and mechanical stirring for 30 min;(2) pre-dispersion of chopped alkali-free glass fiber bundles has little effect on the thermal conductivity of SiO_2 aerogel-glass fiber composites but can improve the cold crushing strength.
文摘The nanoporous thermal insulating material was prepared by using fumed silica,SiC powder and glass fiber as starting materials,the appropriate thickness of the nanoporous thermal insulating material lined in ladle was discussed by the simulation method,and the effect of its application as ladle lining was investigated.The results show that the thermal conductivity of the nanoporous thermal insulating material prepared in composition of fumed silica: SiC powder: glass fiber =75: 20:5 (in mass) is 0.023 W · m^-1 · K^-1 at 1 000 ℃,the appropriate thickness of the nanoporous thermal insulating material lined in ladle is ≤ 5 mm and the average temperature of the ladle outside surface when lined with the nanoporous thermal insulating material is 95 ℃ lower than that with the ordinary thermal insulating material.
文摘A hollow glass microsphere(HGM)/TiO2 composite hollow sphere was successfully prepared via a simple precipitation method.The TiO2 coating layers grew on the surface of the HGMs that range from 20 to 50μm in diameter as nanoparticles with the formation of the SiO Ti bonds.The growth mechanism accounting for the formation of the TiO2 nanolayers was proposed.The morphology,composition,thermal insulation properties,and visible-near infrared(VIS-NIR)refl ectance of the HGMs/TiO2 composite hollow spheres were characterized.The VIS-NIR reflectance of the HGMs/TiO2 composite hollow spheres increased by more than 30%compared to raw HGMs.The thermal conductivity of the particles is 0.058 W/(m K).The result indicates that the VIS-NIR reflectance of the composite hollow spheres is strongly influenced by the coating of TiO2.The composite hollow spheres were used as the main functional filler to prepare the organic-inorganic composite coatings.The glass substrates coated by the organic-inorganic coatings had lower thermal conductivity and higher near infrared reflectivity.Therefore,the HGMs/TiO2 composite hollow spheres can reflect most of the solar energy and effectively keep out the heat as a thermal insulation coating for energy-saving constructions.
基金supported by the Sichuan Science and Technology Program (Grant Nos.2023NSFSC0004,2023NSFSC0790)the National Natural Science Foundation of China (Grant Nos.51827901,52304033)the Sichuan University Postdoctoral Fund (Grant No.2024SCU12093)。
文摘Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.
文摘As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime candidate for reinforcement. This woody plant offers inherent strengths, biodegradability, and abundant availability. Due to its high cellulose content, its low thermal conductivity establishes bamboo as a thermally resistant material. Its low thermal conductivity, enhanced by a NaOH solution treatment, makes it an excellent thermally resistant material. Researchers incorporated Hollow Glass Microspheres (HGM) and Kaolin fillers into the epoxy matrix to improve the insulating properties of bamboo composites. These fillers substantially enhance thermal resistance, limiting heat transfer. Various compositions, like (30% HGM + 25% Bamboo + 65% Epoxy) and (30% Kaolin + 25% Bamboo + 45% Epoxy), were compared to identify the most efficient thermal insulator. Using Vacuum Assisted Resin Transfer Molding (VARTM) ensures uniform distribution of fillers and resin, creating a structurally sound thermal barrier. These reinforced composites, evaluated using the TOPSIS method, demonstrated their potential as high-performance materials combating heat transfer, offering a promising solution in the battle against climate change.
基金supported by the Program of Applied Basic Research Program of Shanxi Province,China (No.202103021223055)the Shanxi Scholarship Council of Chinathe Key R&D program of Shanxi Province,China (No.202102030201006)。
文摘As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC aerogels were successfully prepared by using water glass as the silicon source.Specifically,the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process,and the effect on SiC aerogel microwave absorption properties was investigated.The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity,with a minimum reflection loss value of-46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz.They also have good physical properties,such as the density of0.0444 g/cm^(3),the thermal conductivity of 0.0621 W/(m·K),and the specific surface area of 1099 m^(2)/g.These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers.
文摘We want to conclude on the interest of the “crimping” process used to produce the glass wool and to make a comparison for anisotropic factor obtained from structural property (air permeability) as well as thermal property (thermal conductivity and diffusivity). The main structural (densities, porosity, specific surface, air permeability) and the thermal (conductivity, diffusivity, heat capacity) characteristics of this glass wool are presented. Thermal results are determined by using several methods (Hot disc (HD), Heat Flow Meter (HFM) and Guarded Hot Plate).