期刊文献+
共找到3,894篇文章
< 1 2 195 >
每页显示 20 50 100
The Application of Solid Waste in Thermal Insulation Materials: A Review
1
作者 Ming Liu Pinghua Zhu +2 位作者 Xiancui Yan Haichao Li Xintong Chen 《Journal of Renewable Materials》 EI CAS 2024年第2期329-347,共19页
As socioeconomic development continues,the issue of building energy consumption has attracted significant attention,and improving the thermal insulation performance of buildings has become a crucial strategic measure.... As socioeconomic development continues,the issue of building energy consumption has attracted significant attention,and improving the thermal insulation performance of buildings has become a crucial strategic measure.Simultaneously,the application of solid waste in insulation materials has also become a hot topic.This paper reviews the sources and classifications of solid waste,focusing on research progress in its application as insulation materials in the domains of daily life,agriculture,and industry.The research shows that incorporating household solid waste materials,such as waste glass,paper,and clothing scraps into cementitious thermal insulation can significantly reduce the thermal conductivity of the materials,leading to excellent thermal insulation properties.Insulation materials prepared from agricultural solid waste,such as barley straw,corn stalk,chicken feather,and date palm fibers,possess characteristics of lightweight and strong thermal insulation.Industrial solid waste,including waste tires,iron tailings,and coal bottom ash,can also be utilized in the preparation of insulation materials.These innovative applications not only have positive environmental significance by reducing waste emissions and resource consumption,but also provide efficient and sustainable insulation solutions for the construction industry.However,to further optimize the mix design and enhance the durability of insulation materials,continuous research is required to investigate the mechanisms through which solid waste impacts the performance of insulation materials. 展开更多
关键词 Solid waste building energy consumption insulation material SUSTAINABILITY
下载PDF
Effects of Al_(2)O_(3)-SiO_(2) Raw Material Types on Properties of Anorthite Based Insulation Refractories
2
作者 DU Juan GUO Huishi +4 位作者 YANG Jialin LI Wenfeng GUI Yanghai ZHAO Zhiqiang LIU Yingfan 《China's Refractories》 CAS 2024年第1期23-27,共5页
To optimize their Al_(2)O_(3)-SiO_(2) raw materials,anorthite based insulation refractories were prepared by the in-situ sintering process combined with the foaming method after sintering at 1350℃for 3 h,using green ... To optimize their Al_(2)O_(3)-SiO_(2) raw materials,anorthite based insulation refractories were prepared by the in-situ sintering process combined with the foaming method after sintering at 1350℃for 3 h,using green and pollution-free kaolin,kyanite,andalusite and sillimanite as Al_(2)O_(3)-SiO_(2) raw materials,respectively,and industrial CaCO_(3) as the CaO source.Effects of Al_(2)O_(3)-SiO_(2) raw material types on the physical properties,phase composition and microstructure were investigated.The results are as follows.All samples prepared by different Al_(2)O_(3)-SiO_(2) raw materials have hexagonal flake anorthite and a small amount of mullite and corundum.Their bulk density and thermal conductivity decrease in the order of using kaolin,andalusite,kyanite and sillimanite as the Al_(2)O_(3)-SiO_(2) raw material,but their apparent porosity increases.Moreover,in the sample with kaolin,the bonding between anorthite crystals on the pore walls is closer than that of the other samples,which is conducive to increasing the cold crushing strength.The bonding between anorthite crystals on pore walls gradually decreases in the order of using kyanite,andalusite and sillimanite as the Al_(2)O_(3)-SiO_(2) raw material,thus their cold crushing strength decreases accordingly.In comprehensive consideration,the properties of the sample from kyanite are the optimal.Its apparent porosity,thermal conductivity and cold crushing strength are 84.6%,0.141 W·m^(-1)·K^(-1) and 1.89 MPa,respectively. 展开更多
关键词 anorthite based insulation refractories Al_(2)O_(3)-SiO_(2)raw materials crushing strength thermal conductivity microstructure
下载PDF
Application of Energy-Saving Materials in Architectural Design
3
作者 Yajuan Liu 《Journal of World Architecture》 2024年第3期72-77,共6页
The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservat... The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry. 展开更多
关键词 energy-saving materials Architectural design Advantages Control strategy
下载PDF
Beijing Matrix Technologies introduces revolutionary insulation material Y-Warm
4
作者 Zhong Mengxia 《China Textile》 2024年第4期35-35,共1页
Since the discovery of nanoporous materials (aerogel)in 1931,there is no doubt that this material is classified as a super-insulator with the highest insulation value of any known material with the lowest thermal cond... Since the discovery of nanoporous materials (aerogel)in 1931,there is no doubt that this material is classified as a super-insulator with the highest insulation value of any known material with the lowest thermal conductivity value of any solid.Unfortunately,the application of aerogel is severely limited due to the difficulty of handling.After eight years of research and efforts,Beijing Matrix Technologies Co.,Ltd.has met the world challenge on the combination of mechanical strength and thermal insulation. 展开更多
关键词 insulation DOUBT material
下载PDF
Thermal Performance Analysis of Plaster Reinforced with Raffia Vinifera Particles for Use as Insulating Materials in Building
5
作者 Etienne Malbila Danielle Manuella Djouego Tagne +3 位作者 Bouto Kossi Imbga Lareba Adelaide Ouedraogo Sié Kam David Yemboini Kader Toguyeni 《Journal of Minerals and Materials Characterization and Engineering》 2024年第2期112-138,共27页
The present study focuses on the formulation of new composite consisting of plaster and raffia vinifera particle (RVP) with the purpose to reducing energy consumption. The aim of this study is to test this new compoun... The present study focuses on the formulation of new composite consisting of plaster and raffia vinifera particle (RVP) with the purpose to reducing energy consumption. The aim of this study is to test this new compound as an insulating eco-material in building in a tropical climate. The composites samples were developed by mixing plaster with raffia vinifera particles (RVP) using three different sizes (1.6 mm, 2.5 mm and 4 mm). The effects of four different RVP incorporations rates (i.e., 0wt%, 5wt%;10wt%;15wt%) on physical, thermal, mechanicals properties of the composites were investigated. In addition, the use of the raffia vinifera particles and plaster based composite material as building envelopes thermal insulation material is studied by the habitable cell thermal behavior instrumentation. The results indicate that the incorporation of raffia vinifera particle leads to improve the new composite physical, mechanical and thermal properties. And the parametric analysis reveals that the sampling rate and the size of raffia vinifera particles are the most decisive factor to impact these properties, and to decreases in the thermal conductivity which leads to an improvement to the thermal resistance and energy savings. The best improvement of plaster composite was obtained at the raffia vinifera particles size between 2.5 and 4.0 mm loading of 5wt% (C95P5R) with a good ratio of thermo-physical-mechanical properties. Additionally, the habitable cell experimental thermal behavior, with the new raffia vinifera particles and plaster-based composite as thermal insulating material for building walls, gives an average damping of 4°C and 5.8°C in the insulated house interior environment respectively for cold and hot cases compared to the outside environment and the uninsulated house interior environment. The current study highlights that this mixture gives the new composite thermal insulation properties applicable in the eco-construction of habitats in tropical environments. 展开更多
关键词 Fibres PLASTER Thermal Test Mechanical Test insulating material Indoor Comfort
下载PDF
Preparation and Properties of TiO2-Coated Hollow Glass Microspheres as Thermal Insulation Materials for Energy-Saving Buildings
6
作者 Chunyu Wu Weilin Wang Huiming Ji 《Transactions of Tianjin University》 EI CAS 2020年第4期283-291,共9页
A hollow glass microsphere(HGM)/TiO2 composite hollow sphere was successfully prepared via a simple precipitation method.The TiO2 coating layers grew on the surface of the HGMs that range from 20 to 50μm in diameter ... A hollow glass microsphere(HGM)/TiO2 composite hollow sphere was successfully prepared via a simple precipitation method.The TiO2 coating layers grew on the surface of the HGMs that range from 20 to 50μm in diameter as nanoparticles with the formation of the SiO Ti bonds.The growth mechanism accounting for the formation of the TiO2 nanolayers was proposed.The morphology,composition,thermal insulation properties,and visible-near infrared(VIS-NIR)refl ectance of the HGMs/TiO2 composite hollow spheres were characterized.The VIS-NIR reflectance of the HGMs/TiO2 composite hollow spheres increased by more than 30%compared to raw HGMs.The thermal conductivity of the particles is 0.058 W/(m K).The result indicates that the VIS-NIR reflectance of the composite hollow spheres is strongly influenced by the coating of TiO2.The composite hollow spheres were used as the main functional filler to prepare the organic-inorganic composite coatings.The glass substrates coated by the organic-inorganic coatings had lower thermal conductivity and higher near infrared reflectivity.Therefore,the HGMs/TiO2 composite hollow spheres can reflect most of the solar energy and effectively keep out the heat as a thermal insulation coating for energy-saving constructions. 展开更多
关键词 TIO2 Hollow glass microspheres Thermal insulation materials Near infrared reflectance
下载PDF
Analysis of the Performances of a New Type of Alumina Nanocomposite Structural Material Designed for the Thermal Insulation of High-Rise Buildings
7
作者 Yue Yu 《Fluid Dynamics & Materials Processing》 EI 2023年第3期697-709,共13页
The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and... The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and infrared spectrometer analysis methods.It is found that the composite aerogel alumina material has a multi-level porous nano-network structure.When employed for the thermal insulation of high-rise buildings,the alumina nanocomposite aerogel material can lead to effective energy savings in winter.However,it has almost no energy-saving effect on buildings where energy is consumed for cooling in summer. 展开更多
关键词 ALUMINA NANOmaterialS low thermal conductivity high-rise building insulation materials sol-gel method
下载PDF
Numerical and experimental evaluation for density-related thermal insulation capability of entangled porous metallic wire material
8
作者 Tao Zhou Rong-zheng Fang +3 位作者 Di Jia Pei Yang Zhi-ying Ren Hong-bai Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期177-188,共12页
Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great signifi... Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great significance to reveal the thermal response mechanism of EPMWM based on its complex structural effects.In the present work,virtual manufacturing technology(VMT)was developed to restore the physics-based 3D model of EPMWM.On this basis,the transient thermal analysis is carried out to explore the contact-relevant thermal behavior of EPMWM,and then the spiral unit containing unique structural information are further extracted and counted.In particular,the thermal resistance network is numerically constructed based on the spiral unit through the thermoelectric analogy method to accurately predict the effective thermal conductivity(ETC)of EPMWM.Finally,the thermal diffusivity and specific heat of the samples were obtained by the laser thermal analyzer to calculate the ETC and thermal insulation factor of interest.The results show that the ETC of EPMWM increases with increasing temperature or reducing density under the experimental conditions.The numerical prediction is consistent with the experimental result and the average error is less than 4%. 展开更多
关键词 Entangled porous metallic wire material (EPMWM) Virtual manufacturing technology(VMT) Thermal resistance network Effective thermal conductivity(ETC) Thermal insulation factor
下载PDF
Energy-Saving Construction Technologies for Buildings
9
作者 Jingjing Sun 《Journal of World Architecture》 2024年第3期43-48,共6页
The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy ... The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy control efficiency in building projects,minimizing construction waste,and reducing environmental impact,a foundation for the sustainable development of the industry can be established.This paper mainly analyzes the significance of low-carbon energy-saving construction technology and the control factors of construction,summarizes the status quo of the development of building energy-saving construction,and puts forward strategies for applying building energy-saving construction technology.These strategies serve to achieve low-carbon and energy-saving goals to promote the healthy development of energy-saving construction. 展开更多
关键词 Low-carbon energy-saving concept CONSTRUCTION energy-saving construction Thermal insulation technology Intelligent technology
下载PDF
Porous high-entropy rare-earth phosphate(REPO_(4),RE=La,Sm,Eu,Ce,Pr and Gd)ceramics with excellent thermal insulation performance via pore structure tailoring
10
作者 Peixiong Zhang Enhui Wang +3 位作者 Jingjing Liu Tao Yang Hailong Wang Xinmei Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1651-1658,共8页
Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6)... Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4)(HE(6RE_(1/6))PO_(4))ceramics was prepared by combining the high-entropy method with the pore-forming agent method and the effect of different starch contents(0–60vol%)on this ceramic properties was systematically investigated.The results show that the porous HE(6RE_(1/6))PO_(4)ceramics with 60vol%starch exhibit the lowest thermal conductivity of 0.061 W·m^(-1)·K^(-1)at room temperature and good pore structure stability with a linear shrinkage of approximately1.67%.Moreover,the effect of large regular spherical pores(>10μm)on its thermal insulation performance was discussed,and an optimal thermal conductivity prediction model was screened.The superior properties of the prepared porous HE(6RE_(1/6))PO_(4)ceramics allow them to be promising insulation materials in the future. 展开更多
关键词 porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4) ceramics high-entropy strategy pore-forming agent method thermal insulation material thermal conductivity
下载PDF
Preparation of Ultra-light Xonotlite Thermal Insulation Material Using Carbide Slag 被引量:4
11
作者 刘飞 曹建新 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第2期295-297,共3页
Using carbide slag as the calcareous materials, xonotlite thermal insulation material was successfully prepared via dynamic hydrothermal synthesis. The experimental results show that the xonotlite thermal insulation m... Using carbide slag as the calcareous materials, xonotlite thermal insulation material was successfully prepared via dynamic hydrothermal synthesis. The experimental results show that the xonotlite thermal insulation material is made up of large numbers of "chestnut bur shape" particles. Optimum conditions of calcination temperature of carbide slag, synthesis reaction temperature and time, stirring rate, CaO/SiO2 mol ratio, water/solid weight ratio, amount of fiberglass, molding pressures, dryness temperatures and the presence of dispersant (glycol and polyvinyl alcohol) favor the preparation of xonotlite thermal insulation material. The evaluation of xonotlite thermal insulation material reveals that the product is ultra-light and excellent in physical performances. Such a little amount of impurities in carbide slag has no effect on the phase, morphology, stability at high temperature and physical performances of products. 展开更多
关键词 carbide slag ultra-light xonotlite hydrothermal synthesis thermal insulation material
下载PDF
Study on Glass Fiber Dispersion Technology in SiO_2 Aerogel-glass Fiber Composite Insulation Materials 被引量:1
12
作者 WANG Haimei SUN Xiaofei LI Hongxia 《China's Refractories》 CAS 2019年第1期32-36,共5页
In order to improve the mechanical properties of SiO_2 aerogel-glass fiber composites, effects of different solvents(cyclohexane, n-hexane, ethanol, acetone) and different dispersing modes(planetary ball milling, ultr... In order to improve the mechanical properties of SiO_2 aerogel-glass fiber composites, effects of different solvents(cyclohexane, n-hexane, ethanol, acetone) and different dispersing modes(planetary ball milling, ultrasonic dispersion and mechanical stirring) and dispersing duration(10-40 min) on the dispersion of chopped alkali-free glass fiber bundles were studied to determine the best dispersion process. On this basis, the materials were batched according to the mass fraction of SiO_2 aerogel powder to chopped alkali free glass fiber bundles of 90:10, and a certain amount of zinc oxide light-screening agent and phenolic resin binder were added. SiO_2 aerogel glass fiber composite specimens were prepared by direct adding chopped alkali free glass fiber bundles and pre-dispersed chopped alkali free glass fiber bundles, respectively. The cold crushing strength and the thermal conductivity at different surface temperatures(300, 400, 500 and 600 ℃, respectively)of the specimens were measured. The results show that:(1) the optimum dispersion process of chopped alkali-free glass fiber bundles is using ethanol as solvent and mechanical stirring for 30 min;(2) pre-dispersion of chopped alkali-free glass fiber bundles has little effect on the thermal conductivity of SiO_2 aerogel-glass fiber composites but can improve the cold crushing strength. 展开更多
关键词 silicon aerogel-glass insulating materials alkali-free GLASS FIBER FIBER REINFORCEMENT DISPERSION
下载PDF
Carbon foams prepared from coal tar pitch for building thermal insulation material with low cost 被引量:6
13
作者 Xiang Liu Yanli Wang Liang Zhan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第2期415-420,共6页
A new approach is provided to resolve the large-scale applications of coal tar pitch. Carbon foams with uniform pore size are prepared at the foaming pressure of normal pressure using coal tar pitch as raw materials. ... A new approach is provided to resolve the large-scale applications of coal tar pitch. Carbon foams with uniform pore size are prepared at the foaming pressure of normal pressure using coal tar pitch as raw materials. The physical and chemical performance of high softening point pitch(HSPP) can be regulated by vacuumizing owing to the cooperation of vacuumizing and polycondensation. Results indicate that the optimum softening point and weight ratio of quinoline insoluble are about 292℃ and 65.7%, respectively. And the optimum viscosity of HSPP during the foaming process is distributed in the range of 1000-10000 Pa·s. The resultant carbon foam exhibits excellent performance, such as uniform pore structure, high compressive strength(4.7 MPa), low thermal conductivity(0.07 W·m^(-1) ·K^(-1)), specially, it cannot be fired under the high temperature of 1200 ℃.Thus, this kind of carbon foam is a potential candidate for thermal insulation material applied in energy saving building. 展开更多
关键词 Carbon foam Coal tar pitch Building thermal insulation materials
下载PDF
Sustainability of Sheep Fleece Utilization in Jordan as an Insulation Material to Decrease Environmental Pollution, Increase Farmers’ Income, and Create New Job Opportunities 被引量:1
14
作者 Bahieh M. Alma’atah Taha M. Alkhamis 《Journal of Environmental Protection》 2020年第10期821-837,共17页
This study is planned to investigate the problems associated with the wasted sheep fleece in Jordan and to suggest methods to decrease its environmental impact. Results indicate that sheep fleece in Jordan makes an ex... This study is planned to investigate the problems associated with the wasted sheep fleece in Jordan and to suggest methods to decrease its environmental impact. Results indicate that sheep fleece in Jordan makes an excellent resource for buildings insulation material. A linear regression model is used to predict sheep number for the period (2017-2030). Based on the predicted number of Sheep an estimated annual average production of wool is found for the period (2017-2030) to be (3.586 × 10<sup>3</sup> ton). The average cost per kg of fleece produced is calculated to be 0.39 JD, and the estimated price of fleece per head, if market is available for raw fleece, is 1 JD. Average annual financial losses by farmers are calculated to be (3.743 × 10<sup>6</sup> JD) for the period 2002-2016, and they were estimated to be (9.421 × 10<sup>6</sup> JD) for the years 2017-2030. Physical characteristics of sheep-wool are presented and compared to other competitive insulation materials (polystyrene and rockwool). Sustainability of sheep-wool production to be utilized as an insulation material is found to be an excellent solution to the huge waste of wool with respect to farmers and National income and to the problems associated with environmental impact. Results can be generalized to similar cases worldwide. 展开更多
关键词 Sheep Fleece insulation material Natural Resources Environmental Pollution JORDAN
下载PDF
Effect of Pyrophyllite Addition on Properties of Lightweight Insulation Refractory Materials
15
作者 CHEN Ruoyu LI Yuanbing +4 位作者 XIANG Ruofei LI Shujing FAN Xiafei LI Yawei SANG Shaobai 《China's Refractories》 CAS 2017年第3期38-42,共5页
To solve the problem of over-high density of lightweight insulation refractory bricks prepared with fly ash, new lightweight insulation refractory materials with density 〈 0. 89 g · cm^-3 were .synthesized using... To solve the problem of over-high density of lightweight insulation refractory bricks prepared with fly ash, new lightweight insulation refractory materials with density 〈 0. 89 g · cm^-3 were .synthesized using pyrophyl-lite, .fly ash, and Suzhou clay as the main starting materials and saw dast as the pore forming substance, and controlling the addition of the pyrophyllite (20%, 30% , and 40% by mass ) and the treating temperature (1 250, 1 300, 1 350, and 1 400 ℃ ). The synthesized materials were characterized by the XRD, SEM and the thermal conductivity measuring in.strument. The results show at pyrophyllite addition of 30% and treat temperature of l 400 ℃ , the material can achieve linear shrinkage of 6. 6%, apparent porosity of 57%, bulk density of 0. 75 g · cm^-3, compressive strength of 2.7 MPa, and thermal conductivity at 350 ℃ of 0. 152 -0. 216 W·( m·K)^-1.This indicates that the pyrophyllite decomposition at high temperatures forms mullite and amorphous quartz introducing volume expansion, which counteracts some shrinkage at high temperatures. So it is feasible to use pyrophyllite, fly ash waste and clay to prepare lightweight insulation refractory materials. 展开更多
关键词 PYROPHYLLITE fly ash lightweight insulation refractory materials thermal conductivity bulk density compressive strength
下载PDF
Initial Studies Concerning the Current Status and Problems on the Formulation and Revision of the National Standards for Electric Insulation Materials 被引量:1
16
作者 Zhu Meilan 《China Standardization》 2004年第4期40-43,共4页
关键词 Initial Studies Concerning the Current Status and Problems on the Formulation and Revision of the National Standards for Electric insulation materials
下载PDF
Preparation and Characterization of Sandwich Structured Materials with Interesting Insulation and Fire Resistance
17
作者 Haizhu Wu Jinxing Li +5 位作者 Shouhu Bao Fuxian Yang Jun Zhang Hisham Essawy Guanben Du Xiaojian Zhou 《Journal of Renewable Materials》 SCIE EI 2022年第8期2029-2039,共11页
A cellular material in the form of 3-layered sandwich structure material was prepared via sole use of mechanical stirring without any use of a foaming agent,while Tween-80 was employed as a foam stabilizer via a devel... A cellular material in the form of 3-layered sandwich structure material was prepared via sole use of mechanical stirring without any use of a foaming agent,while Tween-80 was employed as a foam stabilizer via a developed in-situ mold casting.The resulting structure displayed a good appearance with no visual defects.The 3-layered composition of the sandwish structure,“nonporous resin layer-porous foam layer-nonporous resin layer”,was examined in terms of the microstructure,density&density distribution,pulverization ratio,mechanical strength,insulation and flame retardant performance.It was indicated from the results that the bonding between the resin layer and foam layer was tight,while the tensile rupture always occurred in the porous layer.Also,the density of the sandwich structure material was symmetrical with“saddle”distribution,and a uniform density for any given layer.The increase in the density at the interface layer provided a good interpretation for the tensile rupture never occurred at the interface.The brittleness resistance of the developed material was significantly improved,and the pulverization ratio was sharply decreased from 9.93%to 0.31%.The material acquired a thermal conductivity and limiting oxygen index(LOI)of 0.0241 W/m⋅K and 29.92%,respectively,indicating potential use of such materials broadly in fields of insulation and flame retardancy. 展开更多
关键词 Building materials tannin resin sandwich structure insulation fire resistance
下载PDF
Comparative Analysis of Energy Performance for Residential Wall Systems with Conventional and Innovative Insulation Materials: A Case Study
18
作者 Xinrui Lu Ali Memari 《Open Journal of Civil Engineering》 2019年第3期240-254,共15页
This study was focused on the simulation of energy performance for residential buildings incorporating different types of insulation materials. The energy consumption of residential buildings in the U.S. plays a signi... This study was focused on the simulation of energy performance for residential buildings incorporating different types of insulation materials. The energy consumption of residential buildings in the U.S. plays a significant role in the total annual energy consumption, and using insulation materials of higher performances is one of the most effective ways to reduce the building energy consumption. In this study, the building energy simulation was performed in BEopt for a typical residential house in the U.S. with several different types of insulation materials. The results show that adding insulation materials can significantly improve the building energy performance. The polyisocyanurate performed the best among the conventional insulation materials and had an annualized source energy saving of 37% in Pittsburgh. Vacuum-Insulated Panels had the best performance among all types of materials discussed in this study and showed annualized source energy of 41% in Pittsburgh. Phase Change Material was found to be the most effective way to particularly reduce the cooling energy use. 展开更多
关键词 insulation materials Building ENVELOPE Energy Performance BEopt Modeling
下载PDF
Preparation of Magnesia Insulation Materials by Walnut Shell Powder Impregnated with Silica Sol
19
作者 JIAO Changfa LI Guohua KANG Chi 《China's Refractories》 CAS 2022年第3期34-37,共4页
In order to reduce the thermal energy loss of high temperature kilns and furnaces and lower the surface temperature of the kiln body,magnesia insulation materials were prepared using self-made magnesia porous aggregat... In order to reduce the thermal energy loss of high temperature kilns and furnaces and lower the surface temperature of the kiln body,magnesia insulation materials were prepared using self-made magnesia porous aggregates(using high purity magnesia powder as starting material and potassium oleate as the foaming agent),middle grade magnesia powder,calcium aluminate cement,and SiO_(2) micropowder as starting materials,introducing walnut shell powder impregnated with silica sol(short for Sws)as a pore-forming agent.The effects of the Sws addition(0,10%,15%,and 20%,by mass)and the sintering temperature(1300,1350,1400,and 1480℃)on the properties of magnesia insulation materials were studied.The results show that(1)for the specimens fired at 1480℃,when the Sws addition is 10%,the cold compressive strength is 22 MPa;when the Sws addition is 20%,the thermal conductivity is 0.368 W·m^(-1)·K^(-1)(350℃);(2)nano-silica in the silica sol reacts with MgO in the matrix to form forsterite,which encapsulates the pores volatilized from the walnut shell powder and forms closed pores. 展开更多
关键词 foaming method ignition loss method walnut shell powder impregnated with silica sol magnesia porous aggregates magnesia insulation materials
下载PDF
SRC Panel-A New Type Light and Energy-Saving Building Material
20
《China's Foreign Trade》 1998年第2期28-28,共1页
关键词 SRC Panel-A New Type Light and energy-saving Building material 110
下载PDF
上一页 1 2 195 下一页 到第
使用帮助 返回顶部