Disorder effects on topological materials in integer dimensions have been extensively explored in recent years. However, its influence on topological systems in fractional dimensions remains unclear. Here, we investig...Disorder effects on topological materials in integer dimensions have been extensively explored in recent years. However, its influence on topological systems in fractional dimensions remains unclear. Here, we investigate the disorder effects on a fractal system constructed on the Sierpiński lattice in fractional dimensions. The system supports the second-order topological insulator phase characterized by a quantized quadrupole moment and the normal insulator phase. We find that the second-order topological insulator phase on the Sierpiński lattice is robust against weak disorder but suppressed by strong disorder. Most interestingly, we find that disorder can transform the normal insulator phase to the second-order topological insulator phase with an emergent quantized quadrupole moment. Finally, the disorder-induced phase is further confirmed by calculating the energy spectrum and the corresponding probability distributions.展开更多
High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for ...High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for studying delicate phase transitions caused by complex interactions in Mott insulators.With time-resolved transient reflectivity measurements,we identified the new phases in the spin–orbit Mott insulator Sr_(3)Ir_(2)O_7 at 300 K that was previously unidentified using conventional approaches such as x-ray diffraction.Significant pressure-dependent variation of the amplitude and lifetime obtained by fitting the reflectivity?R/R reveal the changes of electronic structure caused by lattice distortions,and reflect the critical phenomena of phase transitions.Our findings demonstrate the importance of ultrafast nonequilibrium dynamics under extreme conditions for understanding the phase transition of Mott insulators.展开更多
Data augmentation is an important task of using existing data to expand data sets.Using generative countermeasure network technology to realize data augmentation has the advantages of high-quality generated samples,si...Data augmentation is an important task of using existing data to expand data sets.Using generative countermeasure network technology to realize data augmentation has the advantages of high-quality generated samples,simple training,and fewer restrictions on the number of generated samples.However,in the field of transmission line insulator images,the freely synthesized samples are prone to produce fuzzy backgrounds and disordered samples of the main insulator features.To solve the above problems,this paper uses the cycle generative adversarial network(Cycle-GAN)used for domain conversion in the generation countermeasure network as the initial framework and uses the self-attention mechanism and channel attention mechanism to assist the conversion to realize the mutual conversion of different insulator samples.The attention module with prior knowledge is used to build the generation countermeasure network,and the generative adversarial network(GAN)model with local controllable generation is built to realize the directional generation of insulator belt defect samples.The experimental results show that the samples obtained by this method are improved in a number of quality indicators,and the quality effect of the samples obtained is excellent,which has a reference value for the data expansion of insulator images.展开更多
We present an infrared spectroscopy study of the magnetic topological insulator MnBi_(4)Te_7 with antiferromagnetic(AFM) order below the Neel temperature TN= 13 K. Our investigation reveals that the low-frequency opti...We present an infrared spectroscopy study of the magnetic topological insulator MnBi_(4)Te_7 with antiferromagnetic(AFM) order below the Neel temperature TN= 13 K. Our investigation reveals that the low-frequency optical conductivity consists of two Drude peaks, indicating a response of free carriers involving multiple bands. Interestingly, the narrow Drude peak grows strongly as the temperature decreases, while the broad Drude peak remains relatively unchanged. The onset of interband transitions starts around 2000 cm^(-1), followed by two prominent absorption peaks around 10000 cm^(-1) and 20000 cm^(-1). Upon cooling, there is a notable transfer of spectral weight from the interband transitions to the Drude response. Below TN, the AFM transition gives rise to small anomalies of the charge response due to a band reconstruction.These findings provide valuable insights into the interplay between magnetism and the electronic properties in MnBi_(4)Te_7.展开更多
By including certain point group symmetry in the classification of band topology,Fu proposed a class of threedimensionaltopological crystalline insulators(TCIs)without spin-orbit coupling in 2011.In Fu’s model,surfac...By including certain point group symmetry in the classification of band topology,Fu proposed a class of threedimensionaltopological crystalline insulators(TCIs)without spin-orbit coupling in 2011.In Fu’s model,surface states(ifpresent)doubly degenerate atГandM when time-reversal and C_(4) symmetries are preserved.The analogs of Fu’s modelwith surface states quadratically degenerate atM are widely studied,while surface states with quadratic degeneracy atГare rarely reported.In this study,we propose a three-dimensional TCI without spin-orbit coupling in a judiciously designednonsymmorphic photonic metacrystal.The surface states of photonic TCIs exhibit quadratic band degeneracy in the(001)surface Brillouin zone(BZ)center(Гpoint).The gapless surface states and their quadratic dispersion are protected by C4and time-reversal symmetries,which correspond to the nontrivial band topology characterized by Z_(2)topological invariant.Moreover,the surface states along lines fromГto the(001)surface BZ boundary exhibit zigzag feature,which is interpretedfrom symmetry perspective by building composite operators constructed by the product of glide symmetries with timereversalsymmetry.The metacrystal array surrounded with air possesses high order hinge states with electric fields highlylocalized at the hinge that may apply to optical sensors.The gapless surface states and hinge states reside in a cleanfrequency bandgap.The topological surface states emerge at the boundary of the metacrystal and perfect electric conductor(PEC),which provide a pathway for topologically manipulating light propagation in photonic devices.展开更多
Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable...Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects.展开更多
Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transiti...Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.展开更多
Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with li...Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.展开更多
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h...Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings.展开更多
This study investigates the ablation of internal insulation induced by the deposition of an alumina film with different lateral film speeds.A sub-scale test solid rocket motor(SRM)was designed in an impinging jet conf...This study investigates the ablation of internal insulation induced by the deposition of an alumina film with different lateral film speeds.A sub-scale test solid rocket motor(SRM)was designed in an impinging jet configuration to form an alumina film on the sample and to encourage the lateral movement of the film by a high-speed wall jet.Fifteen static fire tests of the test SRM were conducted with six different jet velocities(V_(jet)=100 m/s,150 m/s,200 m/s,268 m/s,330 m/s,and 450 m/s)that indirectly affected the velocity of the wall jet and the deposition rate of alumina droplets.The ablation velocity was deduced from the difference in the sample thickness after a test using a coordinate measuring machine.The droplet deposition mass flux and wall jet velocity were obtained via two-phase flow simulation with the same jet velocity and effective pressure.As a result,the characteristics of alumina-induced ablation and the changes in ablation with jet velocities were obtained.The area within0.8×jet diameter was focused upon,where the ratio of ablation velocity to incoming alumina mass was constant for each jet velocity,and showed a similarity in jet structure.When the ablation velocity was increased from 2.05 to 9.98 mm/s with increasing jet velocity,the ratio of the ablation velocity and alumina mass flux decreased from 1.07×10^(-4)to 0.49×10^(-4)m^(3)/kg as Al_(2)O_(3)-C reactions became less efficient with a reduced residence time of the film.Because the decrease in residence time by the wall jet is more pronounced for slow reactions involved in Al_(2)O_(3)-C reactions,fast reactions in Al_(2)O_(3)-C reactions are less affected and result in a convergence of the volumetric rate of ablation per unit mass of alumina.展开更多
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature...With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.展开更多
A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetrae...A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.展开更多
Control and detection of antiferromagnetic topological materials are challenging since the total magnetization vanishes.Here we investigate the magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic ins...Control and detection of antiferromagnetic topological materials are challenging since the total magnetization vanishes.Here we investigate the magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulator Mn Bi2Te4.We find that by breaking the combined mirror symmetries with either perpendicular electric field or external magnetic moment,Kerr and Faraday effects occur.Under perpendicular electric field,antiferromagnetic topological insulators(AFMTI)show sharp peaks at the interband transition threshold,whereas trivial insulators show small adjacent positive and negative peaks.Gate voltage and Fermi energy can be tuned to reveal the differences between AFMTI and trivial insulators.We find that AFMTI with large antiferromagnetic order can be proposed as a pure magneto-optical rotator due to sizable Kerr(Faraday)angles and vanishing ellipticity.Under external magnetic moment,AFMTI and trivial insulators are significantly different in the magnitude of Kerr and Faraday angles and ellipticity.For the qualitative behaviors,AFMTI shows distinct features of Kerr and Faraday angles when the spin configurations of the system change.These phenomena provide new possibilities to optically detect and manipulate the layered topological antiferromagnets.展开更多
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int...Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.展开更多
Pressure induced insulator to metal transition followed by the appearance of superconductivity has been observed recently in inorganic quantum spin liquid candidate NaYbSe_(2).In this paper,we study the properties of ...Pressure induced insulator to metal transition followed by the appearance of superconductivity has been observed recently in inorganic quantum spin liquid candidate NaYbSe_(2).In this paper,we study the properties of isostructural compound NaYbS_(2)under pressure.It is found that the resistance of Na YbS_(2)single crystal exhibits an insulating state below 82.9 GPa,but with a drop of more than six orders of magnitude at room temperature.Then a minimum of resistance is observed at about 100.1 GPa and it moves to lower temperature with further compression.Finally,a metallic state in the whole temperature range is observed at about 130.3 GPa accompanied by a non-Fermi liquid behavior below 100 K.The insulator to metal transition,non-monotonic resistance feature and non-Fermi liquid behavior of NaYbS_(2)under pressure are similar to those of NaYbSe_(2),suggesting that these phenomena might be the universal properties in NaLnCh_(2)(Ln=rare earth,Ch=O,S,Se)system.展开更多
Thermal Hall effect, where a transverse temperature difference is generated by implementing a longitudinal temperature gradient and an external magnetic field in the perpendicular direction to systems, is a useful too...Thermal Hall effect, where a transverse temperature difference is generated by implementing a longitudinal temperature gradient and an external magnetic field in the perpendicular direction to systems, is a useful tool to reveal transport properties of quantum materials. A systematic study of the thermal Hall effect in a Chern insulator is still lacking. Here,using the Landauer–Büttiker formula, we investigated the thermal Hall transport of the Harper–Hofstadter model with flux φ= 1/2 and its generalizations. We demonstrated that the Wiedemann–Franz law, which states that the thermal Hall conductivity is linearly proportional to the quantum Hall conductivity in the low temperature limit, is still valid in this Chern insulator, and that the thermal Hall conductivity can be used to characterize the topological properties of quantum materials.展开更多
To investigate the fouling characteristics of the composite insulator surface under the salt fog environment,the FXBW-110/120-2 composite insulator was taken as the research object.Based on the field-induced charge me...To investigate the fouling characteristics of the composite insulator surface under the salt fog environment,the FXBW-110/120-2 composite insulator was taken as the research object.Based on the field-induced charge mechanism,the multi-physical field coupling software COMSOL was used to numerically simulate the fouling characteristics,explored the calculation method of ESDD,and demonstrated its rationality.Based on this method,the pollution characteristics of the composite insulator under the pollution fog environment were studied,and the influence of wind speed,droplet size,and voltage type on the pollution characteristics of the composite insulator was analyzed.The results showed that:with the increase in wind speed,the amount of accumulated pollution of insulator increases in the range of droplet size,and the relationship between wind speed and accumulated pollution is approximately linear;at the same wind speed,the amount of accumulated pollution increases with the increase of droplet size under the action of DC voltage;when there is no voltage,the amount of dirt on the upper surface of the insulator is more than that on the lower surface,while it is the opposite under DC voltage.展开更多
Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications.Here we study the evolution of insulating ground states of Ta_(2)Pu_(3)Te_(5) a...Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications.Here we study the evolution of insulating ground states of Ta_(2)Pu_(3)Te_(5) and Ta_(2)Ni_(3)Te_(5) under in-situ surface potassium deposition via angle-resolved photoemission spectroscopy.Our results confirm the excitonic insulator character of Ta_(2)d_(3)Te_(5).Upon surface doping,the size of its global gap decreases obviously.After a deposition time of more than 7 min,the potassium atoms induce a metal-insulator phase transition and make the system recover to a normal state.In contrast,our results show that the isostructural compound Ta_(2)Ni_(3)Te_(5) is a conventional insulator.The size of its global gap decreases upon surface doping,but persists positive throughout the doping process.Our results not only confirm the excitonic origin of the band gap in Ta_(2)Pd_(3)Te_(5),but also offer an effective method for designing functional quantum devices in the future.展开更多
Lightweight and high-toughness carbon fiber/phenolic ablator(CFPA)is required as the Thermal Protection System(TPS)material of aerospace vehicles for next-generation space missions.To improve the ablative properties,s...Lightweight and high-toughness carbon fiber/phenolic ablator(CFPA)is required as the Thermal Protection System(TPS)material of aerospace vehicles for next-generation space missions.To improve the ablative properties,silica sol with good particle size distribution prepared using tetramethoxysilane(TMOS)was blended with natural rubber latex and deposited onto carbon fiber felt,which was then integrated with phenolic aerogel matrix,introducing nano-silica into the framework of CFPA.The modified CFPA with a low density of 0.28—0.31 g/cm3exhibits strain-in-fracture as high as 31.2%and thermal conductivity as low as 0.054 W/(m·K).Furthermore,a trace amount of nano-silica could effectively protect CFPA from erosion of oxidizing atmosphere in different high-temperature environments.The oxyacetylene ablation test of 3000°C for 20 s shows a mass ablation rate of 0.0225 g/s,a linear ablation rate of 0.209 mm/s for the modified CFPA,which are 9.64%and 24.82%lower than the unmodified one.Besides,the long-time butane ablation test of 1200°C for 200 s shows an insignificant recession with mass and linear ablation rate of 0.079 g/s and 0.039 mm/s,16.84%and 13.33%lower than the unmodified one.Meanwhile,the fixed thermocouple in the test also demonstrates a good thermal insulation performance with a low peak back-face temperature of 207.7°C,12.25%lower than the unmodified one.Therefore,the nano-silica modified CFPA with excellent overall performance presents promising prospects in high-temperature aerospace applications.展开更多
A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established ...A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate.展开更多
基金the support of the National Natural Science Foundation of China (Grant No.12304195)the Chutian Scholars Program in Hubei Province+3 种基金supported by the National Natural Science Foundation of China (Grant No.12074107)the program of outstanding young and middle-aged scientific and technological innovation team of colleges and universities in Hubei Province (Grant No.T2020001)the innovation group project of the Natural Science Foundation of Hubei Province of China (Grant No.2022CFA012)supported by the Postdoctoral Innovation Research Program in Hubei Province (Grant No.351342)。
文摘Disorder effects on topological materials in integer dimensions have been extensively explored in recent years. However, its influence on topological systems in fractional dimensions remains unclear. Here, we investigate the disorder effects on a fractal system constructed on the Sierpiński lattice in fractional dimensions. The system supports the second-order topological insulator phase characterized by a quantized quadrupole moment and the normal insulator phase. We find that the second-order topological insulator phase on the Sierpiński lattice is robust against weak disorder but suppressed by strong disorder. Most interestingly, we find that disorder can transform the normal insulator phase to the second-order topological insulator phase with an emergent quantized quadrupole moment. Finally, the disorder-induced phase is further confirmed by calculating the energy spectrum and the corresponding probability distributions.
基金The project supported by the National Key Research and Development Program of China(Grant No.2018YFA0305703)Science Challenge Project(Grant No.TZ2016001)the National Natural Science Foundation of China(Grant Nos.U1930401 and 11874075)。
文摘High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for studying delicate phase transitions caused by complex interactions in Mott insulators.With time-resolved transient reflectivity measurements,we identified the new phases in the spin–orbit Mott insulator Sr_(3)Ir_(2)O_7 at 300 K that was previously unidentified using conventional approaches such as x-ray diffraction.Significant pressure-dependent variation of the amplitude and lifetime obtained by fitting the reflectivity?R/R reveal the changes of electronic structure caused by lattice distortions,and reflect the critical phenomena of phase transitions.Our findings demonstrate the importance of ultrafast nonequilibrium dynamics under extreme conditions for understanding the phase transition of Mott insulators.
基金supported in part by the National Natural Science Foundation of China under Grant No.61973055Fundamental Research Funds for the Central Universities under Grant No.ZYGX2020J011Regional Innovation Cooperation Funds of Sichuan under Grant No.2024YFHZ0089.
文摘Data augmentation is an important task of using existing data to expand data sets.Using generative countermeasure network technology to realize data augmentation has the advantages of high-quality generated samples,simple training,and fewer restrictions on the number of generated samples.However,in the field of transmission line insulator images,the freely synthesized samples are prone to produce fuzzy backgrounds and disordered samples of the main insulator features.To solve the above problems,this paper uses the cycle generative adversarial network(Cycle-GAN)used for domain conversion in the generation countermeasure network as the initial framework and uses the self-attention mechanism and channel attention mechanism to assist the conversion to realize the mutual conversion of different insulator samples.The attention module with prior knowledge is used to build the generation countermeasure network,and the generative adversarial network(GAN)model with local controllable generation is built to realize the directional generation of insulator belt defect samples.The experimental results show that the samples obtained by this method are improved in a number of quality indicators,and the quality effect of the samples obtained is excellent,which has a reference value for the data expansion of insulator images.
基金Project supported by the the National Natural Science Foundation of China (Grant No.12274442)the National Key R&D Program of China (Grant No.2022YFA1403901)。
文摘We present an infrared spectroscopy study of the magnetic topological insulator MnBi_(4)Te_7 with antiferromagnetic(AFM) order below the Neel temperature TN= 13 K. Our investigation reveals that the low-frequency optical conductivity consists of two Drude peaks, indicating a response of free carriers involving multiple bands. Interestingly, the narrow Drude peak grows strongly as the temperature decreases, while the broad Drude peak remains relatively unchanged. The onset of interband transitions starts around 2000 cm^(-1), followed by two prominent absorption peaks around 10000 cm^(-1) and 20000 cm^(-1). Upon cooling, there is a notable transfer of spectral weight from the interband transitions to the Drude response. Below TN, the AFM transition gives rise to small anomalies of the charge response due to a band reconstruction.These findings provide valuable insights into the interplay between magnetism and the electronic properties in MnBi_(4)Te_7.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.12104148)the Fundamental Research Funds for the Central Universities(Grant No.531118010565).
文摘By including certain point group symmetry in the classification of band topology,Fu proposed a class of threedimensionaltopological crystalline insulators(TCIs)without spin-orbit coupling in 2011.In Fu’s model,surface states(ifpresent)doubly degenerate atГandM when time-reversal and C_(4) symmetries are preserved.The analogs of Fu’s modelwith surface states quadratically degenerate atM are widely studied,while surface states with quadratic degeneracy atГare rarely reported.In this study,we propose a three-dimensional TCI without spin-orbit coupling in a judiciously designednonsymmorphic photonic metacrystal.The surface states of photonic TCIs exhibit quadratic band degeneracy in the(001)surface Brillouin zone(BZ)center(Гpoint).The gapless surface states and their quadratic dispersion are protected by C4and time-reversal symmetries,which correspond to the nontrivial band topology characterized by Z_(2)topological invariant.Moreover,the surface states along lines fromГto the(001)surface BZ boundary exhibit zigzag feature,which is interpretedfrom symmetry perspective by building composite operators constructed by the product of glide symmetries with timereversalsymmetry.The metacrystal array surrounded with air possesses high order hinge states with electric fields highlylocalized at the hinge that may apply to optical sensors.The gapless surface states and hinge states reside in a cleanfrequency bandgap.The topological surface states emerge at the boundary of the metacrystal and perfect electric conductor(PEC),which provide a pathway for topologically manipulating light propagation in photonic devices.
基金State Grid Jiangsu Electric Power Co.,Ltd.of the Science and Technology Project(Grant No.J2022004).
文摘Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects.
基金Project supported by the Scientific Research Foundation for Youth Academic Talent of Inner Mongolia University (Grant No.1000023112101/010)the Fundamental Research Funds for the Central Universities of China (Grant No.JN200208)+2 种基金supported by the National Natural Science Foundation of China (Grant No.11474023)supported by the National Key Research and Development Program of China (Grant No.2021YFA1401803)the National Natural Science Foundation of China (Grant Nos.11974051 and 11734002)。
文摘Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.
基金the support from the Joint Fund of Advanced Aerospace Manufacturing Technology Research of National Natural Science Foundation of China(U1837601)National Natural Science Foundation of China(52273255)+3 种基金NASF Joint Fund of National Natural Science Foundation of China and China Academy of Engineering Physics(U2130118)China Postdoctoral Science Foundation(2023M732029)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2023092)Undergraduate Innovation&Business Program in Northwestern Polytechnical University(XN2022226)。
文摘Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.
基金the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003).
文摘Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings.
文摘This study investigates the ablation of internal insulation induced by the deposition of an alumina film with different lateral film speeds.A sub-scale test solid rocket motor(SRM)was designed in an impinging jet configuration to form an alumina film on the sample and to encourage the lateral movement of the film by a high-speed wall jet.Fifteen static fire tests of the test SRM were conducted with six different jet velocities(V_(jet)=100 m/s,150 m/s,200 m/s,268 m/s,330 m/s,and 450 m/s)that indirectly affected the velocity of the wall jet and the deposition rate of alumina droplets.The ablation velocity was deduced from the difference in the sample thickness after a test using a coordinate measuring machine.The droplet deposition mass flux and wall jet velocity were obtained via two-phase flow simulation with the same jet velocity and effective pressure.As a result,the characteristics of alumina-induced ablation and the changes in ablation with jet velocities were obtained.The area within0.8×jet diameter was focused upon,where the ratio of ablation velocity to incoming alumina mass was constant for each jet velocity,and showed a similarity in jet structure.When the ablation velocity was increased from 2.05 to 9.98 mm/s with increasing jet velocity,the ratio of the ablation velocity and alumina mass flux decreased from 1.07×10^(-4)to 0.49×10^(-4)m^(3)/kg as Al_(2)O_(3)-C reactions became less efficient with a reduced residence time of the film.Because the decrease in residence time by the wall jet is more pronounced for slow reactions involved in Al_(2)O_(3)-C reactions,fast reactions in Al_(2)O_(3)-C reactions are less affected and result in a convergence of the volumetric rate of ablation per unit mass of alumina.
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(52373089 and 51973173)Startup Foundation of Chongqing Normal University(23XLB011),Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300561)Fundamental Research Funds for the Central Universities。
文摘With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
基金the China Scholarship Council(2021)the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-249-03”.
文摘A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.
基金Project supported by the National Natural Science Foundation of China(Grant No.11904062)the Starting Research Fund from Guangzhou University(Grant No.RQ2020076)Guangzhou Basic Research Program,jointed funded by Guangzhou University(Grant No.202201020186)。
文摘Control and detection of antiferromagnetic topological materials are challenging since the total magnetization vanishes.Here we investigate the magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulator Mn Bi2Te4.We find that by breaking the combined mirror symmetries with either perpendicular electric field or external magnetic moment,Kerr and Faraday effects occur.Under perpendicular electric field,antiferromagnetic topological insulators(AFMTI)show sharp peaks at the interband transition threshold,whereas trivial insulators show small adjacent positive and negative peaks.Gate voltage and Fermi energy can be tuned to reveal the differences between AFMTI and trivial insulators.We find that AFMTI with large antiferromagnetic order can be proposed as a pure magneto-optical rotator due to sizable Kerr(Faraday)angles and vanishing ellipticity.Under external magnetic moment,AFMTI and trivial insulators are significantly different in the magnitude of Kerr and Faraday angles and ellipticity.For the qualitative behaviors,AFMTI shows distinct features of Kerr and Faraday angles when the spin configurations of the system change.These phenomena provide new possibilities to optically detect and manipulate the layered topological antiferromagnets.
基金provided by Guizhou Provincial Science and Technology Projects for Platform and Talent Team Plan(GCC[2023]007)Fok Ying Tung Education Foundation(171095)National Natural Science Foundation of China(11964006).
文摘Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.
基金the National Key Research and Development Program of China(Grant Nos.2018YFA0305700,2018YFE0202600,and 2022YFA1403800)the Beijing Natural Science Foundation(Grant Nos.2202059 and Z200005)+2 种基金the National Natural Science Foundation of China(Grant Nos.22171283 and 12274459)the Hebei Natural Science Foundation(Grant No.B2020205040)the Beijing National Laboratory for Condensed Matter Physics。
文摘Pressure induced insulator to metal transition followed by the appearance of superconductivity has been observed recently in inorganic quantum spin liquid candidate NaYbSe_(2).In this paper,we study the properties of isostructural compound NaYbS_(2)under pressure.It is found that the resistance of Na YbS_(2)single crystal exhibits an insulating state below 82.9 GPa,but with a drop of more than six orders of magnitude at room temperature.Then a minimum of resistance is observed at about 100.1 GPa and it moves to lower temperature with further compression.Finally,a metallic state in the whole temperature range is observed at about 130.3 GPa accompanied by a non-Fermi liquid behavior below 100 K.The insulator to metal transition,non-monotonic resistance feature and non-Fermi liquid behavior of NaYbS_(2)under pressure are similar to those of NaYbSe_(2),suggesting that these phenomena might be the universal properties in NaLnCh_(2)(Ln=rare earth,Ch=O,S,Se)system.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. U2032164 and 12174394)the Start-up Fund from Anhui University in China。
文摘Thermal Hall effect, where a transverse temperature difference is generated by implementing a longitudinal temperature gradient and an external magnetic field in the perpendicular direction to systems, is a useful tool to reveal transport properties of quantum materials. A systematic study of the thermal Hall effect in a Chern insulator is still lacking. Here,using the Landauer–Büttiker formula, we investigated the thermal Hall transport of the Harper–Hofstadter model with flux φ= 1/2 and its generalizations. We demonstrated that the Wiedemann–Franz law, which states that the thermal Hall conductivity is linearly proportional to the quantum Hall conductivity in the low temperature limit, is still valid in this Chern insulator, and that the thermal Hall conductivity can be used to characterize the topological properties of quantum materials.
文摘To investigate the fouling characteristics of the composite insulator surface under the salt fog environment,the FXBW-110/120-2 composite insulator was taken as the research object.Based on the field-induced charge mechanism,the multi-physical field coupling software COMSOL was used to numerically simulate the fouling characteristics,explored the calculation method of ESDD,and demonstrated its rationality.Based on this method,the pollution characteristics of the composite insulator under the pollution fog environment were studied,and the influence of wind speed,droplet size,and voltage type on the pollution characteristics of the composite insulator was analyzed.The results showed that:with the increase in wind speed,the amount of accumulated pollution of insulator increases in the range of droplet size,and the relationship between wind speed and accumulated pollution is approximately linear;at the same wind speed,the amount of accumulated pollution increases with the increase of droplet size under the action of DC voltage;when there is no voltage,the amount of dirt on the upper surface of the insulator is more than that on the lower surface,while it is the opposite under DC voltage.
基金Project supported by the Ministry of Science and Technology of China (Grant No. 2022YFA1403800)the National Natural Science Foundation of China (Grant Nos. U2032204,12188101, and U22A6005)+2 种基金the Chinese Academy of Sciences (Grant No. XDB33000000)the Synergetic Extreme Condition User Facility (SECUF)the Center for Materials Genome。
文摘Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications.Here we study the evolution of insulating ground states of Ta_(2)Pu_(3)Te_(5) and Ta_(2)Ni_(3)Te_(5) under in-situ surface potassium deposition via angle-resolved photoemission spectroscopy.Our results confirm the excitonic insulator character of Ta_(2)d_(3)Te_(5).Upon surface doping,the size of its global gap decreases obviously.After a deposition time of more than 7 min,the potassium atoms induce a metal-insulator phase transition and make the system recover to a normal state.In contrast,our results show that the isostructural compound Ta_(2)Ni_(3)Te_(5) is a conventional insulator.The size of its global gap decreases upon surface doping,but persists positive throughout the doping process.Our results not only confirm the excitonic origin of the band gap in Ta_(2)Pd_(3)Te_(5),but also offer an effective method for designing functional quantum devices in the future.
基金partly supported by the National Natural Science Foundation of China(Grant Nos.22178107,U21A2060,22178116)Xinjiang Uygur Autonomous Region Key Research and Development Program(Grant No.2022B01030)Shanghai Pujiang Program(Grant No.21PJD019)。
文摘Lightweight and high-toughness carbon fiber/phenolic ablator(CFPA)is required as the Thermal Protection System(TPS)material of aerospace vehicles for next-generation space missions.To improve the ablative properties,silica sol with good particle size distribution prepared using tetramethoxysilane(TMOS)was blended with natural rubber latex and deposited onto carbon fiber felt,which was then integrated with phenolic aerogel matrix,introducing nano-silica into the framework of CFPA.The modified CFPA with a low density of 0.28—0.31 g/cm3exhibits strain-in-fracture as high as 31.2%and thermal conductivity as low as 0.054 W/(m·K).Furthermore,a trace amount of nano-silica could effectively protect CFPA from erosion of oxidizing atmosphere in different high-temperature environments.The oxyacetylene ablation test of 3000°C for 20 s shows a mass ablation rate of 0.0225 g/s,a linear ablation rate of 0.209 mm/s for the modified CFPA,which are 9.64%and 24.82%lower than the unmodified one.Besides,the long-time butane ablation test of 1200°C for 200 s shows an insignificant recession with mass and linear ablation rate of 0.079 g/s and 0.039 mm/s,16.84%and 13.33%lower than the unmodified one.Meanwhile,the fixed thermocouple in the test also demonstrates a good thermal insulation performance with a low peak back-face temperature of 207.7°C,12.25%lower than the unmodified one.Therefore,the nano-silica modified CFPA with excellent overall performance presents promising prospects in high-temperature aerospace applications.
基金Project supported by the National Natural Science Foundation of China (Nos. 12172339 and 11732005)the Beijing Natural Science Foundation of China (No. 1222006)。
文摘A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate.