After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact...After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact are not well understood.In this work,we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury.To this end,we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms.First,using the Tg(fli1:EGFP×mpeg1.1:mCherry)zebrafish line,which enables visualization of blood vessels and microglia respectively,we analyzed regenerative angiogenesis from 1 to 21 days post-lesion.In parallel,we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry.We found that after brain damage,the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor(vegfaa and vegfbb)were increased.At the same time,neural stem cell proliferation was also increased,peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis,along with the recruitment of microglia.Then,through pharmacological manipulation by injecting an anti-angiogenic drug(Tivozanib)or Vegf at the lesion site,we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes,as well as microglial recruitment.Finally,we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis,as previously described,as well as injury-induced angiogenesis.In conclusion,we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process.In addition,we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes.This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.展开更多
BACKGROUND Gastrointestinal stromal tumors(GISTs)are typical gastrointestinal tract neoplasms.Imatinib is the first-line therapy for GIST patients.Drug resistance limits the long-term effectiveness of imatinib.The reg...BACKGROUND Gastrointestinal stromal tumors(GISTs)are typical gastrointestinal tract neoplasms.Imatinib is the first-line therapy for GIST patients.Drug resistance limits the long-term effectiveness of imatinib.The regulatory effect of insulin-like growth factor 2(IGF2)has been confirmed in various cancers and is related to resistance to chemotherapy and a worse prognosis.AIM To further investigate the mechanism of IGF2 specific to GISTs.METHODS IGF2 was screened and analyzed using Gene Expression Omnibus(GEO:GSE225819)data.After IGF2 knockdown or overexpression by transfection,the phenotypes(proliferation,migration,invasion,apoptosis)of GIST cells were characterized by cell counting kit 8,Transwell,and flow cytometry assays.We used western blotting to evaluate pathway-associated and epithelial-mesenchymal transition(EMT)-associated proteins.We injected transfected cells into nude mice to establish a tumor xenograft model and observed the occurrence and metastasis of GIST.RESULTS Data from the GEO indicated that IGF2 expression is high in GISTs,associated with liver metastasis,and closely related to drug resistance.GIST cells with high expression of IGF2 had increased proliferation and migration,invasiveness and EMT.Knockdown of IGF2 significantly inhibited those activities.In addition,OEIGF2 promoted GIST metastasis in vivo in nude mice.IGF2 activated IGF1R signaling in GIST cells,and IGF2/IGF1R-mediated glycolysis was required for GIST with liver metastasis.GIST cells with IGF2 knockdown were sensitive to imatinib treatment when IGF2 overexpression significantly raised imatinib resistance.Moreover,2-deoxy-D-glucose(a glycolysis inhibitor)treatment reversed IGF2 overexpressionmediated imatinib resistance in GISTs.CONCLUSION IGF2 targeting of IGF1R signaling inhibited metastasis and decreased imatinib resistance by driving glycolysis in GISTs.展开更多
[ Objedive] This study was aimed to determine the single nucleotide polymorphisms (SNPs) of IGF-I gene in two breeds, Wanxi white goose and Langde goose. [ Method] Two pair of primers was designed based on chicken a...[ Objedive] This study was aimed to determine the single nucleotide polymorphisms (SNPs) of IGF-I gene in two breeds, Wanxi white goose and Langde goose. [ Method] Two pair of primers was designed based on chicken and porcine genomic sequence to amplify the 5' regulatory region of IGF-I, and the sequence was determined and analyzed. [ Result] A total of four SNPs were identified in this region by PCR-SSCP meth- od, that is, A to T at 26 nt, A to G at 215 nt, A to G at 314 nt, and A to T at 325 nt. [ Conclusioa] The two breeds ,wanxi white geese and Langde geese, agree with Hardy-weinberg equilibrium with respect to these SNPS.展开更多
BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a highly fatal disease with limited effective treatment especially after first-line chemotherapy.The human epidermal growth factor receptor 2(HER-2)immunohistochemis...BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a highly fatal disease with limited effective treatment especially after first-line chemotherapy.The human epidermal growth factor receptor 2(HER-2)immunohistochemistry(IHC)positive is associated with more aggressive clinical behavior and shorter overall survival in PDAC.CASE SUMMARY We present a case of multiple metastatic PDAC with IHC mismatch repair proficient but HER-2 IHC weakly positive at diagnosis that didn’t have tumor regression after first-line nab-paclitaxel plus gemcitabine and PD-1 inhibitor treatment.A novel combination therapy PRaG 3.0 of RC48(HER2-antibody-drug conjugate),radio-therapy,PD-1 inhibitor,granulocyte-macrophage colony-stimulating factor and interleukin-2 was then applied as second-line therapy and the patient had confirmed good partial response with progress-free-survival of 6.5 months and overall survival of 14.2 month.She had not developed any grade 2 or above treatment-related adverse events at any point.Percentage of peripheral CD8^(+) Temra and CD4^(+) Temra were increased during first two activation cycles of PRaG 3.0 treatment containing radiotherapy but deceased to the baseline during the maintenance cycles containing no radiotherapy.CONCLUSION PRaG 3.0 might be a novel strategy for HER2-positive metastatic PDAC patients who failed from previous first-line approach and even PD-1 immunotherapy but needs more data in prospective trials.展开更多
AIM:To explore the effects of hepatocyte growth factor(HGF)on retinal pigment epithelium(RPE)cell behaviors.METHODS:The human adult retinal pigment epithelial cell line-19(ARPE-19)were treated by HGF or mesenchymalepi...AIM:To explore the effects of hepatocyte growth factor(HGF)on retinal pigment epithelium(RPE)cell behaviors.METHODS:The human adult retinal pigment epithelial cell line-19(ARPE-19)were treated by HGF or mesenchymalepithelial transition factor(MET)inhibitor SU11274 in vitro.Cell viability was detected by a Cell Counting Kit-8 assay.Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay,respectively.The expression levels of MET,phosphorylated MET,protein kinase B(AKT),and phosphorylated AKT proteins were determined by Western blot assay.The MET and phosphorylated MET proteins were also determined by immunofluorescence assay.RESULTS:HGF increased ARPE-19 cells’viability,proliferation and migration,and induced an increase of phosphorylated MET and phosphorylated AKT proteins.SU11274 significantly reduced cell viability,proliferation,and migration and decreased the expression of MET and AKT proteins.SU11274 suppressed HGF-induced increase of viability,proliferation,and migration in ARPE-19 cells.Additionally,SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins.CONCLUSION:HGF enhances cellular viability,proliferation,and migration in RPE cells through the MET/AKT signaling pathway,whereas this enhancement is suppressed by the MET inhibitor SU11274.HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival.展开更多
AIM To clarify the relationship between the Insulin like growth factor Ⅱ (IGF Ⅱ), IGF Ⅱ receptor and chronic liver diseases and to provide evidences for basic and clinical researches for exploring the potential...AIM To clarify the relationship between the Insulin like growth factor Ⅱ (IGF Ⅱ), IGF Ⅱ receptor and chronic liver diseases and to provide evidences for basic and clinical researches for exploring the potential mechanisms of human hepatocellular carcinoma (HCC). METHODS The poly (A)+ mRNA translation of IGF Ⅱ and IGF Ⅱ receptor in dysplasia liver cell (DLC n =10), liver cirrhosis (LC n =9) and chronic active hepatitis (CAH n =9) were analyzed with RNA gel electrophoresis, Northern blot and hybridization using human IGF Ⅱ and IGF Ⅱ receptor DNA probes labelled with 32 P through Nick translation and autoradiography. RESULTS The overexpression of IGF Ⅱ in DLC (10/10, 100%) was apparently higher than that in CAH (3/9, 33%) and LC (3/9, 33%), ( P <0 01). The overexpression of IGF Ⅱ receptor in DLC (7/10, 70%) was significantly higher than that in CAH (2/9, 22%) and LC (3/9, 33%), respectively. The data of HBV infection from different chronic liver diseases were analyzed. CONCLUSION The overexpression of IGF Ⅱ and IGF Ⅱ receptor in DLC was related to the preceeding of malignant phenotype of hepatocyte, which provided a diagnostic value for early detection of hepatocellular carcinoma (HCC). Persistent HBV infection is strongly associated with abnormal activation of IGF Ⅱ and IGF Ⅱ receptor, which might indicate a stimulating mechanism of autocrine or paracrine growth involved in live cell carcinogenesis.展开更多
Hepatocellular carcinoma(HCC) is the third leading cause of cancer-related deaths worldwide. Only 30%-40% of the patients with HCC are eligible for curative treatments, which include surgical resection as the first op...Hepatocellular carcinoma(HCC) is the third leading cause of cancer-related deaths worldwide. Only 30%-40% of the patients with HCC are eligible for curative treatments, which include surgical resection as the first option, liver transplantation and percutaneous ablation. Unfortunately, there is a high frequency of tumor recurrence after surgical resection and most HCC seem resistant to conventional chemotherapy and radiotherapy. Sorafenib, a multi-tyrosine kinase inhibitor, is the only chemotherapeutic option for patients with advanced hepatocellular carcinoma. Patients treated with Sorafenib have a significant increase in overall survival of about three months. Therefore, there is an urgent need to develop alternative treatments. Due to its role in cell growth and development, the insulin-like growth factor system is commonly deregulated in many cancers. Indeed, the insulin-like growth factor(IGF) axis has recently emerged as a potential target for hepatocellular carcinoma treatment. To this aim, several inhibitors of the pathway have been developed suchas monoclonal antibodies, small molecules, antisense oligonucleotides or small interfering RNAs. However recent studies suggest that, unlike most tumors, HCC development requires increased signaling through insulin growth factor Ⅱ rather than insulin growth factor Ⅰ. This may have great implications in the future treatment of HCC. This review summarizes the role of the IGF axis in liver carcinogenesis and the current status of the strategies designed to target the IGF-Ⅰ signaling pathway for hepatocellular carcinoma treatment.展开更多
Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and ...Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and type 2 diabetes(90%-95%of diabetic cases)are the main types of diabetes in the clinic.Accumulating evidence shows that the fibroblast growth factor(FGF)family plays important roles in many metabolic disorders,including type 1 and type 2 diabetes.FGF consists of 23 family members(FGF-1-23)in humans.Here,we review current findings of FGFs in the treatment of diabetes and management of diabetic complications.Some FGFs(e.g.,FGF-15,FGF-19,and FGF-21)have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes,and their therapeutic roles in diabetes are currently under investigation in clinical trials.Overall,the roles of FGFs in diabetes and diabetic complications are involved in numerous processes.First,FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production.Second,modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components,promote diabetic wound healing process and bone repair,and inhibit cancer cell proliferation and migration.Finally,FGFs can regulate the activation of glucoseexcited neurons and the expression of thermogenic genes.展开更多
Aim: To determine whether adenoviral gene transfer of insulin like growth factor-1 (IGF-1) to the penis of streptozotocin (STZ)-induced diabetic rats could improve erectile capacity. Methods: The STZ diabetic ra...Aim: To determine whether adenoviral gene transfer of insulin like growth factor-1 (IGF-1) to the penis of streptozotocin (STZ)-induced diabetic rats could improve erectile capacity. Methods: The STZ diabetic rats were transfected with AdCMV-βgal or AdCMV-IGF-1. These rats underwent cavernous nerve stimulation to assess erectile function and their responses were compared with those of age-matched control rats 1 to 2 days after transfection. In control and transfected STZ diabetic rats, IGF-1 expression were examined by reverse transcription polymerase chain reaction (RT-PCR), Western blot and histology. The penis β-galactosidase activity and localization of the STZ diabetic rats were also determined. Results: One to two days after transfection, the β-galactosidase was found in the smooth muscle cells of the diabetic rat penis transfected with AdCMV-βgal. One to 2 days after administration of AdCMV- IGF-1, the cavernosal pressure, as determined by the ratio of maximal intracavernous pressure-to-mean arterial pressure (ICP/MAP) and total intracavernous pressure (ICP), was increased in response to cavernous nerve stimulation. Transgene expression was confirmed by RT-PCR, Western blot and histology. Conclusion: Gene transfer of IGF-1 significantly increased erectile function in the STZ diabetic rats. These results suggest that in vivo gene transfer of IGF- 1 might be a new therapeutic intervention for the treatment of erectile dysfunction (ED) in the STZ diabetic rats.展开更多
AIM: To investigate whether the reduction of stem cell factor (SCF) is mediated by decreased endogenous insulin-like growth factor (IGF)-1 in diabetic rat colon smooth muscle. METHODS: Sixteen Sprague-Dawley rats were...AIM: To investigate whether the reduction of stem cell factor (SCF) is mediated by decreased endogenous insulin-like growth factor (IGF)-1 in diabetic rat colon smooth muscle. METHODS: Sixteen Sprague-Dawley rats were randomly divided into two groups: control group and streptozotocin-induced diabetic group. After 8 wk of streptozotocin administration, colonic motility function and contractility of circular muscle strips were measured. The expression of endogenous IGF-1 and SCF was tested in colonic tissues. Colonic smooth muscle cells were cultured from normal adult rats. IGF-1 siRNA transfection was used to investigate whether SCF expression was affected by endogenous IGF-1 expression in smooth muscle cells, and IGF-1 induced SCF expression effects were studied. The effect of high glucose on the expression of endogenous IGF-1 and SCF was also investigated. RESULTS: Diabetic rats showed prolonged colonic transit time (252 ± 16 min vs 168 ± 9 min, P < 0.01) and weakness of circular muscle contraction (0.81 ± 0.09 g vs 2.48 ± 0.23 g, P < 0.01) compared with the control group. Endogenous IGF-1 and SCF protein expression was significantly reduced in the diabetic colonic muscle tissues. IGF-1 and SCF mRNA expression also showed a paralleled reduction in diabetic rats. In the IGF-1 siRNA transfected smooth muscle cells, SCF mRNA and protein expression was significantly decreased. IGF-1 could induce SCF expression in a concentration and time-dependent manner, mainly through the extracellular-signal-regulated kinase 1/2 signal pathway. High glucose inhibited endogenous IGF-1 and SCF expression and the addition of IGF-1 to the medium reversed the SCF expression. CONCLUSION: Myopathy may resolve in colonic motility dysfunction in diabetic rats. Deficiency of endogenous IGF-1 in colonic smooth muscle cells leads to reduction of SCF expression.展开更多
Advances in molecular research in cancer have brought new therapeutic strategies into clinical usage.One new group of targets is tyrosine kinase receptors,which can be treated by several strategies,including small mol...Advances in molecular research in cancer have brought new therapeutic strategies into clinical usage.One new group of targets is tyrosine kinase receptors,which can be treated by several strategies,including small molecule tyrosine kinase inhibitors(TKIs) and monoclonal antibodies(mAbs).Aberrant activation of growth factors/receptors and their signal pathways are required for malignant transformation and progression in gastrointestinal(GI) carcinomas.The concept of targeting specif ic carcinogenic receptors has been validated by successful clinical application of many new drugs.Type I insulin-like growth factor(IGF) receptor(IGF-IR) signaling potently stimulates tumor progression and cellular differentiation,and is a promising new molecular target in human malignancies.In this review,we focus on this promising therapeutic target,IGF-IR.The IGF/IGF-IR axis is an important modifier of tumor cell proliferation,survival,growth,and treatment sensitivity in many malignant diseases,including human GI cancers.Preclinical studies demonstrated that downregulation of IGF-IR signals reversed the neoplastic phenotype and sensitized cells to anticancer treatments.These results were mainly obtained through our strategy of adenoviruses expressing dominant negative IGF-IR(IGF-IR/dn) against gastrointestinal cancers,including esophagus,stomach,colon,and pancreas.We also summarize a variety of strategies to interrupt the IGFs/IGF-IR axis and their preclinical experiences.Several mAbs and TKIs targeting IGF-IR have entered clinical trials,and early results have suggested that these agents have generally acceptable safety profiles as single agents.We summarize the advantages and disadvantages of each strategy and discuss the merits/demerits of dual targeting of IGF-IR and other growth factor receptors,including Her2 and the insulin receptor,as well as other alternatives and possible drug combinations.Thus,IGF-IR might be a candidate for a molecular therapeutic target in human GI carcinomas.展开更多
BACKGROUND Despite significant advancements in the medical treatment of primary hepato-cellular carcinoma(PHC)in recent years,enhancing therapeutic effects and im-proving prognosis remain substantial challenges worldw...BACKGROUND Despite significant advancements in the medical treatment of primary hepato-cellular carcinoma(PHC)in recent years,enhancing therapeutic effects and im-proving prognosis remain substantial challenges worldwide.AIM To investigate the expression levels of serum vascular endothelial growth factor(VEGF)and interleukin(IL)-17 in patients with PHC and evaluate their diagnostic value while exploring their relationship with patients’clinical characteristics.METHODS The study included 50 patients with confirmed PHC who visited Wuhan Han-yang Hospital from January 2021 to January 2022,and 50 healthy individuals from the same period served as the control group.Serum VEGF and IL-17 levels in both groups were measured by Enzyme-Linked Immunosorbent Assay,and their diagnostic value was assessed using receiver operating characteristic(ROC)curves.Pearson correlation analysis was performed to examine the relationship between serum VEGF and IL-17 levels.Pathological data of the PHC patients were analyzed to determine the relationship between serum VEGF and IL-17 levels and pathological characteristics.RESULTS Serum VEGF and IL-17 levels were significantly higher in the study group com-pared to the control group(P<0.05).No significant association was observed between serum VEGF and IL-17 levels and gender,age,combined cirrhosis,tumor diameter,or degree of differentiation(P>0.05).However,there was a significant relationship between clinical TNM stage,tumor metastasis,and serum VEGF and IL-17 levels(P<0.05).Correlation analysis revealed a positive correlation between serum VEGF and IL-17(P<0.05).ROC analysis demonstrated that both serum VEGF and IL-17 had good diagnostic efficacy for PHC.CONCLUSION Serum VEGF and IL-17 levels were significantly higher in PHC patients compared to healthy individuals.Their levels were closely related to pathological features such as tumor metastasis and clinical TNM stage,and there was a significant positive correlation between VEGF and IL-17.These biomarkers may serve as valuable reference in-dicators for the early diagnosis and treatment guidance of PHC.展开更多
BACKGROUND Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome(ARDS)patients.Mesenchymal stromal cell-derived microvesicles(MSC-MVs)have been shown to ex...BACKGROUND Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome(ARDS)patients.Mesenchymal stromal cell-derived microvesicles(MSC-MVs)have been shown to exert antifibrotic effects in lung diseases.AIM To investigate the effects and mechanisms of MSC-MVs on pulmonary fibrosis in ARDS mouse models.METHODS MSC-MVs with low hepatocyte growth factor(HGF)expression(siHGF-MSC-MVs)were obtained via lentivirus transfection and used to establish the ARDS pulmonary fibrosis mouse model.Following intubation,respiratory mechanics-related indicators were measured via an experimental small animal lung function tester.Homing of MSC-MVs in lung tissues was investigated by near-infrared live imaging.Immunohistochemical,western blotting,ELISA and other methods were used to detect expression of pulmonary fibrosis-related proteins and to compare effects on pulmonary fibrosis and fibrosis-related indicators.RESULTS The MSC-MVs gradually migrated and homed to damaged lung tissues in the ARDS model mice.Treatment with MSC-MVs significantly reduced lung injury and pulmonary fibrosis scores.However,low expression of HGF(siHGF-MSC-MVs)significantly inhibited the effects of MSC-MVs(P<0.05).Compared with the ARDS pulmonary fibrosis group,the MSC-MVs group exhibited suppressed expression of type I collagen antigen,type III collagen antigen,and the proteins transforming growth factor-βandα-smooth muscle actin,whereas the siHGF-MVs group exhibited significantly increased expression of these proteins.In addition,pulmonary compliance and the pressure of oxygen/oxygen inhalation ratio were significantly lower in the MSC-MVs group,and the effects of the MSC-MVs were significantly inhibited by low HGF expression(all P<0.05).CONCLUSION MSC-MVs improved lung ventilation functions and inhibited pulmonary fibrosis in ARDS mice partly via HGF mRNA transfer.展开更多
OBJECTIVE: To study the value of serum insulin-like growth factor binding protein-3 (IGFBP-3) levels in differential diagnosis of growth hormone deficiency (GHD). METHODS: To measure serum IGFBP-3 levels by RIA in nor...OBJECTIVE: To study the value of serum insulin-like growth factor binding protein-3 (IGFBP-3) levels in differential diagnosis of growth hormone deficiency (GHD). METHODS: To measure serum IGFBP-3 levels by RIA in normal children and adolescents, GHD children and short-stature children without GHD. RESULTS: Serum level of IGFBP-3 in 129 children with untreated GHD and with no pubertal development was 1.6 +/- 0.9 mg/L, which was less than that in normal group of the same age, but overlapped with the normal children in Tanner stage I. After six-month treatment with recombinant human growth hormone (rhGH), serum level of IGFBP-3 in 59 GHD significantly increased from 1.3 +/- 0.7 mg/L to 2.7 +/- 0.9 mg/L, accompanied by an increase of body heights, growth velocities and serum level of IGF-1. Serum level of IGFBP-3 in 55 short-stature children without GHD was 3.3 +/- 2.2 mg/L, which was not significantly different from that in normal group. CONCLUSION: Serum IGFBP-3 level can reflect the status of GH secretion in children with GHD and is a useful marker for differential diagnosis of GHD.展开更多
AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow...AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow of healthy donors was aspirated from the iliac crest.The adherent cells expanded rapidly and were maintained with periodic passages until a relatively homogeneous population was established.The identification of these cells was carried out by immunophenotype analysis and differentiation potential into osteocytes and adipocytes.To effectively induce hepatic differentiation,we designed a protocol based on a combination of IGF-Ⅰ and liver specificfactors(hepatocyte growth factor,oncostatin M and dexamethasone).Morphological features,hepatic functions and cytological staining were assessed to evaluate transdifferentiation of human marrow-derived MSCs.RESULTS:Flow cytometric analysis and the differentiation potential into osteoblasts and adipocytes showed that more than 90% of human MSCs which were isolated and expanded were positive by specif ic markers and functional tests.Morphological assessment and evaluation of glycogen storage,albumin and α-feto protein expression,as well as albumin and urea secretion revealed a statistically signif icant difference between the experimental groups and control.CONCLUSION:In vitro differentiated MSCs using IGF-Ⅰwere able to display advanced liver metabolic functions,supporting the possibility of developing them as potential alternatives to primary hepatocytes.展开更多
The influence of early-stage intensive insulin therapy on the plasma levels of vascular en- dothelial growth factor (VEGF) and the related parameters in patients with severe trauma and the clini- cal implication wer...The influence of early-stage intensive insulin therapy on the plasma levels of vascular en- dothelial growth factor (VEGF) and the related parameters in patients with severe trauma and the clini- cal implication were investigated. Sixty-four cases of severe trauma (injury severity score 〉20) with stress hyperglycemia (blood glucose 〉9 mmol/L) were randomly divided into intensive insulin therapy group and conventional therapy group. ELISA method, radioimmunoassay and density gradient grada- tion one-step process were used to determine plasma VEGF, endothelin-1 (ET-1), and the number of circulating endothelial cells (CECs) at the day of 0, 2, 3, 5 and 7 after admission. Simultaneously, the changes of CRP concentration in plasma were monitored to evaluate inflammatory response. The results showed that plasma levels of observational indexes in patients receiving early-stage intensive insulin therapy were all significantly lower than those in conventional therapy groups 2, 3, 5 and 7 days after admission [for VEGF (ng/L), 122.2±23.8 vs. 135.9±26.5, 109.6±27.3 vs. 129.0±18.4, 88.7±18.2 vs. 102.6±27.3, 54.2±26.4 vs. 85.7±35.2, P〈0.05, 0.01, 0.05, 0.05 respectively; for ET-1 (ng/L), 162.8±23.5 vs. 173.7±13.2, 128.6±17.5 vs. 148.8±22.4, 96.5±14.8 vs. 125.7±14.8, 90.7±16.9 vs. 104.9±22.5, P〈0.05, 0.01, 0.01, 0.01 respectively; for CRP (mg/L), 23.2±13.8 vs. 31.9±16.5, 13.6±17.3 vs. 23.5±18.4, 8.7±10.2 vs. 15.6±13.3, 5.2±9.4 vs. 10.7±11.2, all P〈0.05; for CECs (/0.9 μL), 10.9±5.6 vs. 13.9±6.2, 8.5±4.9 vs. 11.3±5.3, 6.3±6.4 vs. 9.4±5.7, 4.8±7.1 vs. 7.8±4.8, all P〈0.05]. It was concluded that intensive insulin therapy could antagonize the endothelium injury after trauma and reduce inflammation response quickly, which was one of important mechanisms by which intensive insulin therapy improves the prognosis of trauma patients.展开更多
BACKGROUND Studies have shown that insulin-like growth factor 2 mRNA-binding protein 1(IGF2BP1)plays critical roles in the genesis and development of human cancers.AIM To investigate the clinical significance and role...BACKGROUND Studies have shown that insulin-like growth factor 2 mRNA-binding protein 1(IGF2BP1)plays critical roles in the genesis and development of human cancers.AIM To investigate the clinical significance and role of IGF2BP1 in pancreatic cancer.METHODS Expression levels of IGF2BP1 and microRNA-494(miR-494)were mined based on Gene Expression Omnibus datasets and validated in both clinical samples and cell lines by quantitative real-time polymerase chain reaction and Western blot.The relationship between IGF2BP1 expression and clinicopathological factors of pancreatic cancer patients was analyzed.The effect and mechanism of IGF2BP1 on pancreatic cancer cell proliferation were investigated in vitro and in vivo.Analyses were performed to explore underlying mechanisms of IGF2BP1 upregulation in pancreatic cancer and assays were carried out to verify the posttranscriptional regulation of IGF2BP1 by miR-494.RESULTS We found that IGF2BP1 was upregulated and associated with a poor prognosis in pancreatic cancer patients.We showed that downregulation of IGF2BP1 inhibited pancreatic cancer cell growth in vitro and in vivo via the AKT signaling pathway.Mechanistically,we showed that the frequent upregulation of IGF2BP1 was attributed to the downregulation of miR-494 expression in pancreatic cancer.Furthermore,we discovered that reexpression of miR-494 could partially abrogate the oncogenic role of IGF2BP1.CONCLUSION Our results revealed that upregulated IGF2BP1 promotes the proliferation of pancreatic cancer cells via the AKT signaling pathway and confirmed that the activation of IGF2BP1 is partly due to the silencing of miR-494.展开更多
Constitutive activation of the insulin-like growth factor (IGF)-signaling axis is frequently observed in human hepatocellular carcinoma(HCC).Especially the over- expression of the fetal growth factor IGF-Ⅱ,IGF-Ⅰ rec...Constitutive activation of the insulin-like growth factor (IGF)-signaling axis is frequently observed in human hepatocellular carcinoma(HCC).Especially the over- expression of the fetal growth factor IGF-Ⅱ,IGF-Ⅰ receptor(IGF-IR),and cytoplasmic downstream effectors such as insulin-receptor substrates(IRS)contribute to proliferation,anti-apoptosis,and invasive behavior. This review focuses on the relevant alterations in this signaling pathway and independent in vivo models that support the central role IGF-Ⅱsignaling during HCC development and progression.Since this pathway has become the center of interest as a target for potential anti-cancer therapy in many types of malignancies,various experimental strategies have been developed,including neutralizing antibodies and selective receptor kinase inhibitors,with respect to the specific and efficient reduction of oncogenic IGF-Ⅱ/IGF-IR-signaling.展开更多
INTRODUCTIONInsulin-like growth factor Ⅱ(IGF-Ⅱ) is a mitogenic peptide of 74 kD and is mostly synthesized in fetal liver tissue .IGF-Ⅱ is believed to play an important role in fetal growth and development and is in...INTRODUCTIONInsulin-like growth factor Ⅱ(IGF-Ⅱ) is a mitogenic peptide of 74 kD and is mostly synthesized in fetal liver tissue .IGF-Ⅱ is believed to play an important role in fetal growth and development and is involved in cellular proliferation and differentiation[1-5]. Recently ,several researchers have reported increased expression of the IGF-Ⅱgene in human hepatocellular carcinoma (HCC) and adjacent non-cancerous liver tissues [6-10].展开更多
AIM: To investigate the benefits of insulin like growth factor-1 (IGF-1) supplementation to serum-free institut georges lopez-1 (IGL-1) solution to protect fatty liver against cold ischemia reperfusion injury. METHO...AIM: To investigate the benefits of insulin like growth factor-1 (IGF-1) supplementation to serum-free institut georges lopez-1 (IGL-1) solution to protect fatty liver against cold ischemia reperfusion injury. METHODS: Steatotic livers were preserved for 24 h in IGL-1 solution supplemented with or without IGF-1 and then perfused "ex vivo " for 2 h at 37℃. We examined the effects of IGF-1 on hepatic damage and function (transaminases, percentage of sulfobromophthalein clearance in bile and vascular resistance). We also studied other factors associated with the poor tolerance of fatty livers to cold ischemia reperfusion injury such as mitochondrial damage, oxidative stress, nitric oxide, tumor necrosis factor-α (TNF-α) and mitogen-activated protein kinases.RESULTS: Steatotic livers preserved in IGL-1 solutionsupplemented with IGF-1 showed lower transaminase levels, increased bile clearance and a reduction in vascular resistance when compared to those preserved in IGL-1solution alone. These benefits are mediated by activation of AKT and constitutive endothelial nitric oxide synthase (eNOS), as well as the inhibition of inflammatory cytokines such as TNF-α. Mitochondrial damage and oxidative stress were also prevented.CONCLUSION: IGL-1 enrichment with IGF-1 increasedfatty liver graft preservation through AKT and eNOS activation, and prevented TNF-α release during normothermic reperfusion.展开更多
基金supported by European Regional Development Funds RE0022527 ZEBRATOX(EU-Région Réunion-French State national counterpart,to Nicolas Diotel and Jean-Loup Bascands).
文摘After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact are not well understood.In this work,we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury.To this end,we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms.First,using the Tg(fli1:EGFP×mpeg1.1:mCherry)zebrafish line,which enables visualization of blood vessels and microglia respectively,we analyzed regenerative angiogenesis from 1 to 21 days post-lesion.In parallel,we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry.We found that after brain damage,the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor(vegfaa and vegfbb)were increased.At the same time,neural stem cell proliferation was also increased,peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis,along with the recruitment of microglia.Then,through pharmacological manipulation by injecting an anti-angiogenic drug(Tivozanib)or Vegf at the lesion site,we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes,as well as microglial recruitment.Finally,we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis,as previously described,as well as injury-induced angiogenesis.In conclusion,we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process.In addition,we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes.This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.
文摘BACKGROUND Gastrointestinal stromal tumors(GISTs)are typical gastrointestinal tract neoplasms.Imatinib is the first-line therapy for GIST patients.Drug resistance limits the long-term effectiveness of imatinib.The regulatory effect of insulin-like growth factor 2(IGF2)has been confirmed in various cancers and is related to resistance to chemotherapy and a worse prognosis.AIM To further investigate the mechanism of IGF2 specific to GISTs.METHODS IGF2 was screened and analyzed using Gene Expression Omnibus(GEO:GSE225819)data.After IGF2 knockdown or overexpression by transfection,the phenotypes(proliferation,migration,invasion,apoptosis)of GIST cells were characterized by cell counting kit 8,Transwell,and flow cytometry assays.We used western blotting to evaluate pathway-associated and epithelial-mesenchymal transition(EMT)-associated proteins.We injected transfected cells into nude mice to establish a tumor xenograft model and observed the occurrence and metastasis of GIST.RESULTS Data from the GEO indicated that IGF2 expression is high in GISTs,associated with liver metastasis,and closely related to drug resistance.GIST cells with high expression of IGF2 had increased proliferation and migration,invasiveness and EMT.Knockdown of IGF2 significantly inhibited those activities.In addition,OEIGF2 promoted GIST metastasis in vivo in nude mice.IGF2 activated IGF1R signaling in GIST cells,and IGF2/IGF1R-mediated glycolysis was required for GIST with liver metastasis.GIST cells with IGF2 knockdown were sensitive to imatinib treatment when IGF2 overexpression significantly raised imatinib resistance.Moreover,2-deoxy-D-glucose(a glycolysis inhibitor)treatment reversed IGF2 overexpressionmediated imatinib resistance in GISTs.CONCLUSION IGF2 targeting of IGF1R signaling inhibited metastasis and decreased imatinib resistance by driving glycolysis in GISTs.
文摘[ Objedive] This study was aimed to determine the single nucleotide polymorphisms (SNPs) of IGF-I gene in two breeds, Wanxi white goose and Langde goose. [ Method] Two pair of primers was designed based on chicken and porcine genomic sequence to amplify the 5' regulatory region of IGF-I, and the sequence was determined and analyzed. [ Result] A total of four SNPs were identified in this region by PCR-SSCP meth- od, that is, A to T at 26 nt, A to G at 215 nt, A to G at 314 nt, and A to T at 325 nt. [ Conclusioa] The two breeds ,wanxi white geese and Langde geese, agree with Hardy-weinberg equilibrium with respect to these SNPS.
基金the Suzhou Medical Center,No.Szlcyxzx202103the National Natural Science Foundation of China,No.82171828+9 种基金the Key R&D Plan of Jiangsu Province(Social Development),No.BE2021652the Subject Construction Support Project of The Second Affiliated Hospital of Soochow University,No.XKTJHRC20210011Wu Jieping Medical Foundation,No.320.6750.2021-01-12the Special Project of“Technological Innovation”Project of CNNC Medical Industry Co.Ltd,No.ZHYLTD2021001Suzhou Science and Education Health Project,No.KJXW2021018Foundation of Chinese Society of Clinical Oncology,No.Y-pierrefabre202102-0113Beijing Bethune Charitable Foundation,No.STLKY0016Research Projects of China Baoyuan Investment Co.,No.270004Suzhou Gusu Health Talent Program,No.GSWS2022028Open Project of State Key Laboratory of Radiation Medicine and Protection of Soochow University,No.GZN1202302.
文摘BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a highly fatal disease with limited effective treatment especially after first-line chemotherapy.The human epidermal growth factor receptor 2(HER-2)immunohistochemistry(IHC)positive is associated with more aggressive clinical behavior and shorter overall survival in PDAC.CASE SUMMARY We present a case of multiple metastatic PDAC with IHC mismatch repair proficient but HER-2 IHC weakly positive at diagnosis that didn’t have tumor regression after first-line nab-paclitaxel plus gemcitabine and PD-1 inhibitor treatment.A novel combination therapy PRaG 3.0 of RC48(HER2-antibody-drug conjugate),radio-therapy,PD-1 inhibitor,granulocyte-macrophage colony-stimulating factor and interleukin-2 was then applied as second-line therapy and the patient had confirmed good partial response with progress-free-survival of 6.5 months and overall survival of 14.2 month.She had not developed any grade 2 or above treatment-related adverse events at any point.Percentage of peripheral CD8^(+) Temra and CD4^(+) Temra were increased during first two activation cycles of PRaG 3.0 treatment containing radiotherapy but deceased to the baseline during the maintenance cycles containing no radiotherapy.CONCLUSION PRaG 3.0 might be a novel strategy for HER2-positive metastatic PDAC patients who failed from previous first-line approach and even PD-1 immunotherapy but needs more data in prospective trials.
基金the Natural Science Foundation of Shaanxi Province(No.2022JM-521)the Science and Technology Plan Project of Xi’an(No.21YXYJ0031).
文摘AIM:To explore the effects of hepatocyte growth factor(HGF)on retinal pigment epithelium(RPE)cell behaviors.METHODS:The human adult retinal pigment epithelial cell line-19(ARPE-19)were treated by HGF or mesenchymalepithelial transition factor(MET)inhibitor SU11274 in vitro.Cell viability was detected by a Cell Counting Kit-8 assay.Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay,respectively.The expression levels of MET,phosphorylated MET,protein kinase B(AKT),and phosphorylated AKT proteins were determined by Western blot assay.The MET and phosphorylated MET proteins were also determined by immunofluorescence assay.RESULTS:HGF increased ARPE-19 cells’viability,proliferation and migration,and induced an increase of phosphorylated MET and phosphorylated AKT proteins.SU11274 significantly reduced cell viability,proliferation,and migration and decreased the expression of MET and AKT proteins.SU11274 suppressed HGF-induced increase of viability,proliferation,and migration in ARPE-19 cells.Additionally,SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins.CONCLUSION:HGF enhances cellular viability,proliferation,and migration in RPE cells through the MET/AKT signaling pathway,whereas this enhancement is suppressed by the MET inhibitor SU11274.HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival.
文摘AIM To clarify the relationship between the Insulin like growth factor Ⅱ (IGF Ⅱ), IGF Ⅱ receptor and chronic liver diseases and to provide evidences for basic and clinical researches for exploring the potential mechanisms of human hepatocellular carcinoma (HCC). METHODS The poly (A)+ mRNA translation of IGF Ⅱ and IGF Ⅱ receptor in dysplasia liver cell (DLC n =10), liver cirrhosis (LC n =9) and chronic active hepatitis (CAH n =9) were analyzed with RNA gel electrophoresis, Northern blot and hybridization using human IGF Ⅱ and IGF Ⅱ receptor DNA probes labelled with 32 P through Nick translation and autoradiography. RESULTS The overexpression of IGF Ⅱ in DLC (10/10, 100%) was apparently higher than that in CAH (3/9, 33%) and LC (3/9, 33%), ( P <0 01). The overexpression of IGF Ⅱ receptor in DLC (7/10, 70%) was significantly higher than that in CAH (2/9, 22%) and LC (3/9, 33%), respectively. The data of HBV infection from different chronic liver diseases were analyzed. CONCLUSION The overexpression of IGF Ⅱ and IGF Ⅱ receptor in DLC was related to the preceeding of malignant phenotype of hepatocyte, which provided a diagnostic value for early detection of hepatocellular carcinoma (HCC). Persistent HBV infection is strongly associated with abnormal activation of IGF Ⅱ and IGF Ⅱ receptor, which might indicate a stimulating mechanism of autocrine or paracrine growth involved in live cell carcinogenesis.
基金Supported by Ministerio de Ciencia e Innovacion BIO2009/09295 and SAF2012-40003FEDER funding,funds from the"UTE project CIMA"+1 种基金the project RNAREG(CSD2009-00080)from The Ministry of Science and Innovation under the programme CONSOLIDER INGENIO 2010
文摘Hepatocellular carcinoma(HCC) is the third leading cause of cancer-related deaths worldwide. Only 30%-40% of the patients with HCC are eligible for curative treatments, which include surgical resection as the first option, liver transplantation and percutaneous ablation. Unfortunately, there is a high frequency of tumor recurrence after surgical resection and most HCC seem resistant to conventional chemotherapy and radiotherapy. Sorafenib, a multi-tyrosine kinase inhibitor, is the only chemotherapeutic option for patients with advanced hepatocellular carcinoma. Patients treated with Sorafenib have a significant increase in overall survival of about three months. Therefore, there is an urgent need to develop alternative treatments. Due to its role in cell growth and development, the insulin-like growth factor system is commonly deregulated in many cancers. Indeed, the insulin-like growth factor(IGF) axis has recently emerged as a potential target for hepatocellular carcinoma treatment. To this aim, several inhibitors of the pathway have been developed suchas monoclonal antibodies, small molecules, antisense oligonucleotides or small interfering RNAs. However recent studies suggest that, unlike most tumors, HCC development requires increased signaling through insulin growth factor Ⅱ rather than insulin growth factor Ⅰ. This may have great implications in the future treatment of HCC. This review summarizes the role of the IGF axis in liver carcinogenesis and the current status of the strategies designed to target the IGF-Ⅰ signaling pathway for hepatocellular carcinoma treatment.
文摘Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and type 2 diabetes(90%-95%of diabetic cases)are the main types of diabetes in the clinic.Accumulating evidence shows that the fibroblast growth factor(FGF)family plays important roles in many metabolic disorders,including type 1 and type 2 diabetes.FGF consists of 23 family members(FGF-1-23)in humans.Here,we review current findings of FGFs in the treatment of diabetes and management of diabetic complications.Some FGFs(e.g.,FGF-15,FGF-19,and FGF-21)have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes,and their therapeutic roles in diabetes are currently under investigation in clinical trials.Overall,the roles of FGFs in diabetes and diabetic complications are involved in numerous processes.First,FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production.Second,modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components,promote diabetic wound healing process and bone repair,and inhibit cancer cell proliferation and migration.Finally,FGFs can regulate the activation of glucoseexcited neurons and the expression of thermogenic genes.
文摘Aim: To determine whether adenoviral gene transfer of insulin like growth factor-1 (IGF-1) to the penis of streptozotocin (STZ)-induced diabetic rats could improve erectile capacity. Methods: The STZ diabetic rats were transfected with AdCMV-βgal or AdCMV-IGF-1. These rats underwent cavernous nerve stimulation to assess erectile function and their responses were compared with those of age-matched control rats 1 to 2 days after transfection. In control and transfected STZ diabetic rats, IGF-1 expression were examined by reverse transcription polymerase chain reaction (RT-PCR), Western blot and histology. The penis β-galactosidase activity and localization of the STZ diabetic rats were also determined. Results: One to two days after transfection, the β-galactosidase was found in the smooth muscle cells of the diabetic rat penis transfected with AdCMV-βgal. One to 2 days after administration of AdCMV- IGF-1, the cavernosal pressure, as determined by the ratio of maximal intracavernous pressure-to-mean arterial pressure (ICP/MAP) and total intracavernous pressure (ICP), was increased in response to cavernous nerve stimulation. Transgene expression was confirmed by RT-PCR, Western blot and histology. Conclusion: Gene transfer of IGF-1 significantly increased erectile function in the STZ diabetic rats. These results suggest that in vivo gene transfer of IGF- 1 might be a new therapeutic intervention for the treatment of erectile dysfunction (ED) in the STZ diabetic rats.
基金Supported by The National Natural Science Foundation of China, No. 30971354The International Cooperation Project of Jiangsu Province Department of Health, No. SBZ201100103The Graduate Innovation Foundation of Jiangsu Province, China,No. CXZZ11_0704
文摘AIM: To investigate whether the reduction of stem cell factor (SCF) is mediated by decreased endogenous insulin-like growth factor (IGF)-1 in diabetic rat colon smooth muscle. METHODS: Sixteen Sprague-Dawley rats were randomly divided into two groups: control group and streptozotocin-induced diabetic group. After 8 wk of streptozotocin administration, colonic motility function and contractility of circular muscle strips were measured. The expression of endogenous IGF-1 and SCF was tested in colonic tissues. Colonic smooth muscle cells were cultured from normal adult rats. IGF-1 siRNA transfection was used to investigate whether SCF expression was affected by endogenous IGF-1 expression in smooth muscle cells, and IGF-1 induced SCF expression effects were studied. The effect of high glucose on the expression of endogenous IGF-1 and SCF was also investigated. RESULTS: Diabetic rats showed prolonged colonic transit time (252 ± 16 min vs 168 ± 9 min, P < 0.01) and weakness of circular muscle contraction (0.81 ± 0.09 g vs 2.48 ± 0.23 g, P < 0.01) compared with the control group. Endogenous IGF-1 and SCF protein expression was significantly reduced in the diabetic colonic muscle tissues. IGF-1 and SCF mRNA expression also showed a paralleled reduction in diabetic rats. In the IGF-1 siRNA transfected smooth muscle cells, SCF mRNA and protein expression was significantly decreased. IGF-1 could induce SCF expression in a concentration and time-dependent manner, mainly through the extracellular-signal-regulated kinase 1/2 signal pathway. High glucose inhibited endogenous IGF-1 and SCF expression and the addition of IGF-1 to the medium reversed the SCF expression. CONCLUSION: Myopathy may resolve in colonic motility dysfunction in diabetic rats. Deficiency of endogenous IGF-1 in colonic smooth muscle cells leads to reduction of SCF expression.
基金Supported by Grants-in-aid from the Ministry of Education,Culture,Sports,Science,and Technology the Ministry of Health,Labour and Welfare,Japan(in part)by Foundation for Promotion of Cancer Research in Japan
文摘Advances in molecular research in cancer have brought new therapeutic strategies into clinical usage.One new group of targets is tyrosine kinase receptors,which can be treated by several strategies,including small molecule tyrosine kinase inhibitors(TKIs) and monoclonal antibodies(mAbs).Aberrant activation of growth factors/receptors and their signal pathways are required for malignant transformation and progression in gastrointestinal(GI) carcinomas.The concept of targeting specif ic carcinogenic receptors has been validated by successful clinical application of many new drugs.Type I insulin-like growth factor(IGF) receptor(IGF-IR) signaling potently stimulates tumor progression and cellular differentiation,and is a promising new molecular target in human malignancies.In this review,we focus on this promising therapeutic target,IGF-IR.The IGF/IGF-IR axis is an important modifier of tumor cell proliferation,survival,growth,and treatment sensitivity in many malignant diseases,including human GI cancers.Preclinical studies demonstrated that downregulation of IGF-IR signals reversed the neoplastic phenotype and sensitized cells to anticancer treatments.These results were mainly obtained through our strategy of adenoviruses expressing dominant negative IGF-IR(IGF-IR/dn) against gastrointestinal cancers,including esophagus,stomach,colon,and pancreas.We also summarize a variety of strategies to interrupt the IGFs/IGF-IR axis and their preclinical experiences.Several mAbs and TKIs targeting IGF-IR have entered clinical trials,and early results have suggested that these agents have generally acceptable safety profiles as single agents.We summarize the advantages and disadvantages of each strategy and discuss the merits/demerits of dual targeting of IGF-IR and other growth factor receptors,including Her2 and the insulin receptor,as well as other alternatives and possible drug combinations.Thus,IGF-IR might be a candidate for a molecular therapeutic target in human GI carcinomas.
文摘BACKGROUND Despite significant advancements in the medical treatment of primary hepato-cellular carcinoma(PHC)in recent years,enhancing therapeutic effects and im-proving prognosis remain substantial challenges worldwide.AIM To investigate the expression levels of serum vascular endothelial growth factor(VEGF)and interleukin(IL)-17 in patients with PHC and evaluate their diagnostic value while exploring their relationship with patients’clinical characteristics.METHODS The study included 50 patients with confirmed PHC who visited Wuhan Han-yang Hospital from January 2021 to January 2022,and 50 healthy individuals from the same period served as the control group.Serum VEGF and IL-17 levels in both groups were measured by Enzyme-Linked Immunosorbent Assay,and their diagnostic value was assessed using receiver operating characteristic(ROC)curves.Pearson correlation analysis was performed to examine the relationship between serum VEGF and IL-17 levels.Pathological data of the PHC patients were analyzed to determine the relationship between serum VEGF and IL-17 levels and pathological characteristics.RESULTS Serum VEGF and IL-17 levels were significantly higher in the study group com-pared to the control group(P<0.05).No significant association was observed between serum VEGF and IL-17 levels and gender,age,combined cirrhosis,tumor diameter,or degree of differentiation(P>0.05).However,there was a significant relationship between clinical TNM stage,tumor metastasis,and serum VEGF and IL-17 levels(P<0.05).Correlation analysis revealed a positive correlation between serum VEGF and IL-17(P<0.05).ROC analysis demonstrated that both serum VEGF and IL-17 had good diagnostic efficacy for PHC.CONCLUSION Serum VEGF and IL-17 levels were significantly higher in PHC patients compared to healthy individuals.Their levels were closely related to pathological features such as tumor metastasis and clinical TNM stage,and there was a significant positive correlation between VEGF and IL-17.These biomarkers may serve as valuable reference in-dicators for the early diagnosis and treatment guidance of PHC.
基金Research Project of Jiangsu Provincial Health Commission,No.Z2022008and Research Project of Yangzhou Health Commission,No.2023-2-27.
文摘BACKGROUND Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome(ARDS)patients.Mesenchymal stromal cell-derived microvesicles(MSC-MVs)have been shown to exert antifibrotic effects in lung diseases.AIM To investigate the effects and mechanisms of MSC-MVs on pulmonary fibrosis in ARDS mouse models.METHODS MSC-MVs with low hepatocyte growth factor(HGF)expression(siHGF-MSC-MVs)were obtained via lentivirus transfection and used to establish the ARDS pulmonary fibrosis mouse model.Following intubation,respiratory mechanics-related indicators were measured via an experimental small animal lung function tester.Homing of MSC-MVs in lung tissues was investigated by near-infrared live imaging.Immunohistochemical,western blotting,ELISA and other methods were used to detect expression of pulmonary fibrosis-related proteins and to compare effects on pulmonary fibrosis and fibrosis-related indicators.RESULTS The MSC-MVs gradually migrated and homed to damaged lung tissues in the ARDS model mice.Treatment with MSC-MVs significantly reduced lung injury and pulmonary fibrosis scores.However,low expression of HGF(siHGF-MSC-MVs)significantly inhibited the effects of MSC-MVs(P<0.05).Compared with the ARDS pulmonary fibrosis group,the MSC-MVs group exhibited suppressed expression of type I collagen antigen,type III collagen antigen,and the proteins transforming growth factor-βandα-smooth muscle actin,whereas the siHGF-MVs group exhibited significantly increased expression of these proteins.In addition,pulmonary compliance and the pressure of oxygen/oxygen inhalation ratio were significantly lower in the MSC-MVs group,and the effects of the MSC-MVs were significantly inhibited by low HGF expression(all P<0.05).CONCLUSION MSC-MVs improved lung ventilation functions and inhibited pulmonary fibrosis in ARDS mice partly via HGF mRNA transfer.
文摘OBJECTIVE: To study the value of serum insulin-like growth factor binding protein-3 (IGFBP-3) levels in differential diagnosis of growth hormone deficiency (GHD). METHODS: To measure serum IGFBP-3 levels by RIA in normal children and adolescents, GHD children and short-stature children without GHD. RESULTS: Serum level of IGFBP-3 in 129 children with untreated GHD and with no pubertal development was 1.6 +/- 0.9 mg/L, which was less than that in normal group of the same age, but overlapped with the normal children in Tanner stage I. After six-month treatment with recombinant human growth hormone (rhGH), serum level of IGFBP-3 in 59 GHD significantly increased from 1.3 +/- 0.7 mg/L to 2.7 +/- 0.9 mg/L, accompanied by an increase of body heights, growth velocities and serum level of IGF-1. Serum level of IGFBP-3 in 55 short-stature children without GHD was 3.3 +/- 2.2 mg/L, which was not significantly different from that in normal group. CONCLUSION: Serum IGFBP-3 level can reflect the status of GH secretion in children with GHD and is a useful marker for differential diagnosis of GHD.
基金Supported by A grant from Stem Cell Organization:www.stem cell.ir
文摘AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow of healthy donors was aspirated from the iliac crest.The adherent cells expanded rapidly and were maintained with periodic passages until a relatively homogeneous population was established.The identification of these cells was carried out by immunophenotype analysis and differentiation potential into osteocytes and adipocytes.To effectively induce hepatic differentiation,we designed a protocol based on a combination of IGF-Ⅰ and liver specificfactors(hepatocyte growth factor,oncostatin M and dexamethasone).Morphological features,hepatic functions and cytological staining were assessed to evaluate transdifferentiation of human marrow-derived MSCs.RESULTS:Flow cytometric analysis and the differentiation potential into osteoblasts and adipocytes showed that more than 90% of human MSCs which were isolated and expanded were positive by specif ic markers and functional tests.Morphological assessment and evaluation of glycogen storage,albumin and α-feto protein expression,as well as albumin and urea secretion revealed a statistically signif icant difference between the experimental groups and control.CONCLUSION:In vitro differentiated MSCs using IGF-Ⅰwere able to display advanced liver metabolic functions,supporting the possibility of developing them as potential alternatives to primary hepatocytes.
基金supported by the National Natural Science Foundation of China (No. 30700869)
文摘The influence of early-stage intensive insulin therapy on the plasma levels of vascular en- dothelial growth factor (VEGF) and the related parameters in patients with severe trauma and the clini- cal implication were investigated. Sixty-four cases of severe trauma (injury severity score 〉20) with stress hyperglycemia (blood glucose 〉9 mmol/L) were randomly divided into intensive insulin therapy group and conventional therapy group. ELISA method, radioimmunoassay and density gradient grada- tion one-step process were used to determine plasma VEGF, endothelin-1 (ET-1), and the number of circulating endothelial cells (CECs) at the day of 0, 2, 3, 5 and 7 after admission. Simultaneously, the changes of CRP concentration in plasma were monitored to evaluate inflammatory response. The results showed that plasma levels of observational indexes in patients receiving early-stage intensive insulin therapy were all significantly lower than those in conventional therapy groups 2, 3, 5 and 7 days after admission [for VEGF (ng/L), 122.2±23.8 vs. 135.9±26.5, 109.6±27.3 vs. 129.0±18.4, 88.7±18.2 vs. 102.6±27.3, 54.2±26.4 vs. 85.7±35.2, P〈0.05, 0.01, 0.05, 0.05 respectively; for ET-1 (ng/L), 162.8±23.5 vs. 173.7±13.2, 128.6±17.5 vs. 148.8±22.4, 96.5±14.8 vs. 125.7±14.8, 90.7±16.9 vs. 104.9±22.5, P〈0.05, 0.01, 0.01, 0.01 respectively; for CRP (mg/L), 23.2±13.8 vs. 31.9±16.5, 13.6±17.3 vs. 23.5±18.4, 8.7±10.2 vs. 15.6±13.3, 5.2±9.4 vs. 10.7±11.2, all P〈0.05; for CECs (/0.9 μL), 10.9±5.6 vs. 13.9±6.2, 8.5±4.9 vs. 11.3±5.3, 6.3±6.4 vs. 9.4±5.7, 4.8±7.1 vs. 7.8±4.8, all P〈0.05]. It was concluded that intensive insulin therapy could antagonize the endothelium injury after trauma and reduce inflammation response quickly, which was one of important mechanisms by which intensive insulin therapy improves the prognosis of trauma patients.
基金Supported by the National Natural Science Foundation of China,No.61802350
文摘BACKGROUND Studies have shown that insulin-like growth factor 2 mRNA-binding protein 1(IGF2BP1)plays critical roles in the genesis and development of human cancers.AIM To investigate the clinical significance and role of IGF2BP1 in pancreatic cancer.METHODS Expression levels of IGF2BP1 and microRNA-494(miR-494)were mined based on Gene Expression Omnibus datasets and validated in both clinical samples and cell lines by quantitative real-time polymerase chain reaction and Western blot.The relationship between IGF2BP1 expression and clinicopathological factors of pancreatic cancer patients was analyzed.The effect and mechanism of IGF2BP1 on pancreatic cancer cell proliferation were investigated in vitro and in vivo.Analyses were performed to explore underlying mechanisms of IGF2BP1 upregulation in pancreatic cancer and assays were carried out to verify the posttranscriptional regulation of IGF2BP1 by miR-494.RESULTS We found that IGF2BP1 was upregulated and associated with a poor prognosis in pancreatic cancer patients.We showed that downregulation of IGF2BP1 inhibited pancreatic cancer cell growth in vitro and in vivo via the AKT signaling pathway.Mechanistically,we showed that the frequent upregulation of IGF2BP1 was attributed to the downregulation of miR-494 expression in pancreatic cancer.Furthermore,we discovered that reexpression of miR-494 could partially abrogate the oncogenic role of IGF2BP1.CONCLUSION Our results revealed that upregulated IGF2BP1 promotes the proliferation of pancreatic cancer cells via the AKT signaling pathway and confirmed that the activation of IGF2BP1 is partly due to the silencing of miR-494.
文摘Constitutive activation of the insulin-like growth factor (IGF)-signaling axis is frequently observed in human hepatocellular carcinoma(HCC).Especially the over- expression of the fetal growth factor IGF-Ⅱ,IGF-Ⅰ receptor(IGF-IR),and cytoplasmic downstream effectors such as insulin-receptor substrates(IRS)contribute to proliferation,anti-apoptosis,and invasive behavior. This review focuses on the relevant alterations in this signaling pathway and independent in vivo models that support the central role IGF-Ⅱsignaling during HCC development and progression.Since this pathway has become the center of interest as a target for potential anti-cancer therapy in many types of malignancies,various experimental strategies have been developed,including neutralizing antibodies and selective receptor kinase inhibitors,with respect to the specific and efficient reduction of oncogenic IGF-Ⅱ/IGF-IR-signaling.
基金Project supported by the National Nature Science Foundation of China,No.39470774
文摘INTRODUCTIONInsulin-like growth factor Ⅱ(IGF-Ⅱ) is a mitogenic peptide of 74 kD and is mostly synthesized in fetal liver tissue .IGF-Ⅱ is believed to play an important role in fetal growth and development and is involved in cellular proliferation and differentiation[1-5]. Recently ,several researchers have reported increased expression of the IGF-Ⅱgene in human hepatocellular carcinoma (HCC) and adjacent non-cancerous liver tissues [6-10].
基金Supported by The Ministry of Health and Consumption(PI081988),CIBER-ehd,Carlos Ⅲ Institute,Madrid,SpainMinistry of Foreign Affairs and International Cooperation(A/020255/08and A/02987/09)Mohamed Amine Zaouali is fellowship-holder from the Catalan Society of Transplantation
文摘AIM: To investigate the benefits of insulin like growth factor-1 (IGF-1) supplementation to serum-free institut georges lopez-1 (IGL-1) solution to protect fatty liver against cold ischemia reperfusion injury. METHODS: Steatotic livers were preserved for 24 h in IGL-1 solution supplemented with or without IGF-1 and then perfused "ex vivo " for 2 h at 37℃. We examined the effects of IGF-1 on hepatic damage and function (transaminases, percentage of sulfobromophthalein clearance in bile and vascular resistance). We also studied other factors associated with the poor tolerance of fatty livers to cold ischemia reperfusion injury such as mitochondrial damage, oxidative stress, nitric oxide, tumor necrosis factor-α (TNF-α) and mitogen-activated protein kinases.RESULTS: Steatotic livers preserved in IGL-1 solutionsupplemented with IGF-1 showed lower transaminase levels, increased bile clearance and a reduction in vascular resistance when compared to those preserved in IGL-1solution alone. These benefits are mediated by activation of AKT and constitutive endothelial nitric oxide synthase (eNOS), as well as the inhibition of inflammatory cytokines such as TNF-α. Mitochondrial damage and oxidative stress were also prevented.CONCLUSION: IGL-1 enrichment with IGF-1 increasedfatty liver graft preservation through AKT and eNOS activation, and prevented TNF-α release during normothermic reperfusion.