AIM: To study the expression of endothelial and inducible nitric oxide synthases (eNOS and iNOS) and their role in inflammatory bowel disease (IBD). METHODS: We examined the effect of sera obtained from patients...AIM: To study the expression of endothelial and inducible nitric oxide synthases (eNOS and iNOS) and their role in inflammatory bowel disease (IBD). METHODS: We examined the effect of sera obtained from patients with active Crohn's disease (CD) and ulcerative colitis (UC) on the function and viability of human umbilical vein endothelial cells (HUVEC). HUVECs were cultured for 0-48 h in the presence of a medium containing pooled serum of healthy controls, or serum from patients with active CD or UC. Expression of eNOS and iNOS was visualized by immunofluorescence, and quantified by the densitometry of Western blots. Proliferation activity was assessed by computerized image analyses of Ki-67 immunoreactive cells, and also tested in the presence of the NOS inhibitor, 10^-4 mol/L L-NAME. Apoptosis and necrosis was examined by the annexin-V-biotin method and by propidium iodide staining, respectively. RESULTS: In HUVEC immediately after exposure to UC, serum eNOS was markedly induced, reaching a peak at 12 h. In contrast, a decrease in eNOS was observed after incubation with CD sera and the eNOS level was minimal at 20 h compared to control (18%±16% vs 23%± 15% P〈0.01). UC or CD serum caused a significant increase in iNOS compared to control (UC: 300%±21%; CD: 275% ± 27% vs 108% ± 14%, P〈0.01). Apoptosis/necrosis characteristics did not differ significantly in either experiment. Increased proliferation activity was detected in the presence of CD serum or after treatment with L-NAME. Cultures showed tube-like formations after 24 h treatment with CD serum. CONCLUSION: IBD sera evoked changes in the ratio of eNOS/iNOS, whereas did not influence the viability of HUVEC. These involved down-regulation of eNOS and up-regulation of iNOS simultaneously, leading to increased proliferation activity and possibly a reduced antiinflammatory protection of endothelial cells.展开更多
AIM: To clarify how the endothelial nitric oxide synthase (eNOS, NOS3) make effect on outflow facility through the trabecular meshwork (TM). METHODS: Inhibition of NOS3 gene expression in human TM cells were co...AIM: To clarify how the endothelial nitric oxide synthase (eNOS, NOS3) make effect on outflow facility through the trabecular meshwork (TM). METHODS: Inhibition of NOS3 gene expression in human TM cells were conducted by three siRNAs. Then the mRNA and protein levels of NOS3 in siRNA-treated and negative control (NC) cells were determined, still were the collagen, type IV, alpha 1 (COL4A1) and fibronectin 1 by real-time PCR and Western blot analysis. In addition, NOS3 concentrations in culture supernatant fluids of TM cells were measured. Cell cycle and cell apoptosis analysis were performed using flow cytometry. RESULTS: The mRNA level of NOS3 was decreased by three different siRNA interference, similar results were obtained not only of the relative levels of NOS3 protein, but also the expression levels of COL4A1 and fibronectin 1. The number of cells in S phase was decreased, while contrary result was obtained in G2 phase. The number of apoptotic cells in siRNA-treated groups were significant increased compared to the NC samples. CONCLUSION: Abnormal NOS3 expression can make effects on the proteins levels of extracellular matrix component (e.g. fibronectin 1 and COL4A1). Reduced NOS3 restrains the TM cell cycle progression at the G2/ M-phase transition and induced cell apoptosis.展开更多
This study investigated the changes in human umbilical vein endothelial cells (HUVECs) induced by overexpression of endothelial nitric oxide synthase traffic inducer (NOSTRIN) and its role in cellular injury. Reco...This study investigated the changes in human umbilical vein endothelial cells (HUVECs) induced by overexpression of endothelial nitric oxide synthase traffic inducer (NOSTRIN) and its role in cellular injury. Recombinant NOSTRIN-expressing and empty vectors were transfected into cultured HUVECs, and factor Ⅷ-related antigen was examined by using immunohistochemical analysis. Growth curves were generated for both transfected and untransfected cells and these indicated that the prolifera- tive ability of cells overexpressing NOSTRIN was significantly decreased. The expression of NOSTRIN and eNOS proteins was detected by using Western blot analysis, endothelial NOS (eNOS) activity was assayed by using spectrophotometry, and NO2-/NO3- levels were measured usin~ nitrate reductase. Immunohistochemical analysis demonstrated that all groups expressed NOSTRIN in the plasma mem- brane and cytoplasm, and Western blot analysis confirmed that NOSTR1N levels were significantly higher in cells transfected with the NOSTR1N plasmid (P〈0.01). The activity of eNOS and the levels of NO2-/NO3 were significantly decreased in NOSTRIN overexpressing cells as compared with empty vector and untransfected cells (P〈0.01 and P〈0.01, respectively). Morphological and ultrastructural changes were observed under light and electron microscopy, and it was found that NOS- TRIN-overexpressing cells were elongated with deformities of the karyotheca, injury to the plasma membrane, increased lipids in the cytoplasm, and shortened microvilli. This study showed that overex- pression of NOSTRIN had a significant effect on eNOS activity in HUVECs and resulted in significant cellular damage.展开更多
Objective To examine the effects of insulin on cell proliferation, nitric oxide (NO) release and nitric oxide synthase (NOS) gene expression in bovine aortic endothelial cells ( BAEC ) . Methods The mi togenesis ...Objective To examine the effects of insulin on cell proliferation, nitric oxide (NO) release and nitric oxide synthase (NOS) gene expression in bovine aortic endothelial cells ( BAEC ) . Methods The mi togenesis was assessed by MTT method; the products of NO in the culture media, by Griess reaction; and the levels of NOS mRNA in BAEC , by RT/PCR tech nique. Results BAEC were not responsive to the growth-promoting effects of insulin. Stimulation with insulin resulted a dose-dependent rise of NO in the culture supernatants 2h later, with a maximum at 12~24h and a decline at 24h. This rise was inhibited by an inhibitor of NOS (L-NAME). NOS mRNA increased slightly in BAEC without statistical significance. Conelu sion The study suggested that the insulin-induced NO release might be caused directly by NOS activation.展开更多
Background: Low shear stress caused by disturbed or turbulent flow at arterial branch points is known to associate with atherosclerosis. However, shear stress at the venous valve location and its association with deep...Background: Low shear stress caused by disturbed or turbulent flow at arterial branch points is known to associate with atherosclerosis. However, shear stress at the venous valve location and its association with deep vein thrombosis are less understood due to the complex and poorly understood bi-directional flow in the valve pocket region. We investigated how venous endothelial cells respond to flow shear stress around the venous valve region using a novel in vitro system that mimics venous flow. Results: Human umbilical vein EAhy. 926 cells were cultured on a flexible silastic membrane that mimicked venous tissue. Confluent cells were exposed to sinusoidal uni-and bi-directional pulsatile shear stress (0.1 to 1 dyne/cm2) for up to 6 h. Western-blot analyses indicated that endothelial nitric oxide (eNOS) expression levels decreased regardless of all tested flow patterns, stress magnitude, and shearing time. In contrast, the expression levels of inhibitor of κB (kappa B) and α (alpha)-tubulin were unaffected by the shear stress. Conclusions: Our results indicate that shear stress causes a decrease specifically in eNOS expression, suggesting that it may play a significant role in regulating inflammation related protein expression in endothelial cells.展开更多
3-hydroxy-3-methylgulutaryl-coenzyme A (HMG-CoA) reductase inhibitors or statins are a kind of lipid-lowering agents and have been used for the prevention and treatment of Cardiovascular diseases. Recent studies sug...3-hydroxy-3-methylgulutaryl-coenzyme A (HMG-CoA) reductase inhibitors or statins are a kind of lipid-lowering agents and have been used for the prevention and treatment of Cardiovascular diseases. Recent studies suggested that statins, besides lowering cholesterol, may protect vessels by enhancing the activity of endothelial nitric oxide synthase (eNOS). In the present study, we investigated if simvastatin increases eNOS activity through its phosphorylation in 293 cells (293-eNOS) with stable expression of eNOS. The results showed that incubation of 293-eNOS cells with simvastatin (10 μm/L) for 2 h significantly increased in the activity of eNOS as shown by the conversion of L-arginine to L-citrulline (2889.70±201.51 versus 5630.18+218.75 pmol/min . mg proteins) (P〈0.01). Western blotting revealed that simvastatin increased phosphorylation of eNOS at 1177 (ser) and also 495 (thr) but did not affect the overall expression of eNOS or inducible NOS. Further study found that simvastatin raised phosphorylation levels of Akt and AMPK, and such effect could be antagonized by Akt inhibitor or AMPK inhibitor. These results suggest that simvastatin could stimulate,the activity of eNOS via its phosphorylation by Akt and AMPK, which provides a new mechanism, other than lipid-lowering effect, for the cardiovascular protection of statins.展开更多
Objective To find out whether dexamethasone induces an uncoupling of the endothelial nitric oxide synthase (eNOS). Methods & Results A major cause of eNOS uncoupling is a deficiency of its cofactor tetrahydrobiopte...Objective To find out whether dexamethasone induces an uncoupling of the endothelial nitric oxide synthase (eNOS). Methods & Results A major cause of eNOS uncoupling is a deficiency of its cofactor tetrahydrobiopterin (BH4). Treatment of human EA.hy 926 endothelial cells with dexamethasone decreased mRNA and protein expression of both BH4-synthesizing enzymes: GTP cyclobydrolase I and dihydrofolate reductase. Consistently, a concentration- and time-dependent reduction of BH4, dihydrobiopterin (BH2) as well as BH4:BH2 ratio was observed in dexamethasone-treated cells. Surprisingly, no evidence for eNOS uncoupling was found. We then analyzed the expression and phosphorylation of the eNOS enzyme. Dexamethasone treatment led to a down-regulation of eNOS protein and a reduction of eNOS phosphorylation at serine 1177. A reduction of eNOS expression may lead to a relatively normal BH4: eNOS molar ratio in dexamethasone-treated cells. Because the BH4-eNOS stoichiometry rather than the absolute BH4 amount is the key determinant of eNOS functionality (i.e., coupled or uncoupled), the down-regulation of eNOS may represent an explanation for the absence of eNOS uncoupling. Phosphorylation of eNOS at serine 1177 is needed for both the NO-producing activity of the coupled eNOS and the superoxide-producing activity of the uncoupled eNOS. Thus, a reduction of serine 1177 phosphorylation may render a potentially uncoupled eNOS hardly detectable. Conclusions Although dexamethasone reduces BH4 levels in endothelial cells, eNOS uncoupling is not evident. The reduction of NO production in dexamethasone-treated endothelial cells is mainly attributable to reduced eNOS expression and decreased eNOS phosphorylation at serine 1177.展开更多
AIM:To investigate the effect of prednisolone,a synthetic glucocorticoid used in inflammatory diseases,on the growth of cultured osteosarcoma cells.METHODS:Two osteosarcoma cell lines with different degree of differen...AIM:To investigate the effect of prednisolone,a synthetic glucocorticoid used in inflammatory diseases,on the growth of cultured osteosarcoma cells.METHODS:Two osteosarcoma cell lines with different degree of differentiation were used.SaOS2 show a rather mature phenotype,while U2 OS are negative for almost all osteoblastic markers.The cells were exposed to different concentrations of prednisolone(1-9 μmol/L) with or without antioxidants or the inhibitor of inducible nitric oxide synthase(i NOS) l-N6-(iminoethyl)-lysine-HCl(L-NIL).Cell growth was assessed by counting viable cells.The production of nitric oxide(NO) was measured in the conditioned media by the Griess method.The production of reactive oxygen species was quantified using 2'-7'-dichlorofluorescein diacetate.Western blot with specific antibodies against NOSs was performed on cell extracts.RESULTS:Prednisolone inhibited SaOS2 cell growth in a dose dependent manner.No significant effects were observed in U2OS.The inhibition of SaOS2 growth is not due to oxidative stress,because antioxidants do not rescue cell proliferation.Since high concentrations of NO inhibit bone formation,we also measured NO and found it induced in SaOS2,but not in U2 OS,exposed to prednisolone,because of the upregulation of i NOS as detected by western blot.Therefore,we treated SaOS2 with prednisolone in the presence or in the absence of L-NIL.L-NIL prevented NO release induced by prednisolone at all the concentrations apart from 9 μmol/L.At the same concentrations,we found that L-NIL rescued SaOS2 growth after exposure to prednisolone.In U2 OS cells,prednisolone did not induce NO production nor affected cell growth.All together,these data indicate that a link exists between increased amounts of NO and growth inhibition in response to prednisolone in SaOS2.CONCLUSION:Prednisolone inhibited SaOS2 proliferation by increasing the release of NO through the upregulation of i NOS,while no effect was exerted on U2OS.展开更多
Objective:To examine the role of p38 mitogen-activated protein kinase (MAPK) in NO production and Inos expression in human endothelial cells stimulated by lipopolysaccharide (LPS). Methods: The NO level in the superna...Objective:To examine the role of p38 mitogen-activated protein kinase (MAPK) in NO production and Inos expression in human endothelial cells stimulated by lipopolysaccharide (LPS). Methods: The NO level in the supernatant of the cell culture media was measured with Griess method, expressions of Inos protein and Mrna in vitro cultured endothelial cell line ECV304 were detected with immunofluorescence analysis and reverse transcriptase-PCR respectively. Immunokinase assay was employed to measure P38mapk activity. Results: Compared with the basal level of Inos expression and NO production, the NO level and the expressions of Inos Mrna and protein in the cells were increased after LPS stimulation. P38mapk activity in ECV304 cells exhibited a marked increase at 15 min after LPS stimulation, lasting for about 45 min before gradually decline. The Inos protein and Mrna expressions induced by LPS stimulation was significantly inhibited by SB203580 [4-(4-fluorophenyl)-2-(4- methylsulfinylphenyl)-5-(4-pyridyl) imidazole], a highly specific inhibitor of p38 MAPK. Conclusion: p38 MAPK plays an important role in iNOS expression and NO production in ECV304 cells, and the inhibition of the signal transduction pathway can be effective to reduce the production of iNOS and other cytokines, and therefore constitutes a useful strategy for treating septic shock or inflammation.展开更多
To study the relationship of the polymorphism of endothelial nitric oxide synthase(eNOS)gene and blood pressure,lipid profiles and blood glucose level.By using PCR-RFLP,the eNOS Glu298Asp gene polymorphism was detecte...To study the relationship of the polymorphism of endothelial nitric oxide synthase(eNOS)gene and blood pressure,lipid profiles and blood glucose level.By using PCR-RFLP,the eNOS Glu298Asp gene polymorphism was detected in 184 patients with essential hypertension and 196 matched healthy individuals with normal blood pressure.Taking into account eNOS Glu298Asp poly-morphisms,the relationship of blood pressure with trigly-cerides(TG),total cholesterol(TC),high density lipoprotein(HDL),low density lipoprotein(LDL)and blood glucose level was analyzed.The distribution of eNOS Glu298Asp polymorphism had no significant differ-ence between different blood pressure groups and gender groups,but there was a significant difference between dif-ferent age groups,diastolic blood pressure groups or BMI groups(P<0.05).Asp/Asp genotype significantly increased the risk of hypertension in individuals with serum TC above 5.4 mmol/L(P=0.03,OR=52.65).eNOS Glu298Asp polymorphism and serum lipid could synergis-tically modulate the blood pressure.eNOS Asp/Asp geno-type could significantly increase the risk of hypertension in individuals with serum TC over 5.4 mmol/L.eNOS Glu298Asp in combination with serum TC could be used to predict the risk of hypertension.展开更多
Background It has been widely demonstrated that endothelial progenitor cells are involved in several diseases and that they have therapeutic implications. In order to define the altered pulmonary vascular homeostasis ...Background It has been widely demonstrated that endothelial progenitor cells are involved in several diseases and that they have therapeutic implications. In order to define the altered pulmonary vascular homeostasis in chronic obstructive pulmonary disease, we sought to observe the level and functions of circulating endothelial progenitor calls in patients with chronic obstructive pulmonary disease. Methods The total study population included 20 patients with chronic obstructive pulmonary disease and 20 control subjects. The number of circulating endothelial progenitor cells (CD34+/CD133+/IVEGFR-2+cells) was counted by flow cytometry. Circulating endothelial progenitor cells were also cultured in vitro and characterized by uptake of Dil- acLDL, combining with UEA-I, and expression of von Willebrand factor and endothelial nitric oxide synthase. Adhesion, proliferation, production of nitric oxide, and expression of endothelial nitric oxide synthase and phosphorylated-endothelial nitric oxide synthase were detected to determine functions of circulating endothelial progenitor cells in patients with chronic obstructive pulmonary disease. Results The number of circulating endothelial progenitor cells in the chronic obstructive pulmonary disease group was lower than in the control group: (0.54±0.16)% vs. (1.15±0.57)%, P 〈0.05. About 80% of adherent peripheral blood mononuclear cells cultured in vitro were double labeled with Dil-acLDL and UEA-I. The 92% and 91% of them were positive for von Willebrand factor and endothelial nitric oxide synthase, respectively. Compared with the control, there were significantly fewer adhering endothelial progenitor cells in chronic obstructive pulmonary disease patients: 18.7±4.8/field vs. 45.0±5.9/field, P 〈0.05. The proliferation assay showed that the proliferative capacity of circulating endothelial progenitor cells from chronic obstructive pulmonary disease patients was significantly impaired: 0.135±0.038 vs. 0.224±0.042, P 〈0.05. Furthermore, nitric oxide synthase (112.06±10.00 vs. 135.41±5.38, P 〈0.05), phosphorylated endothelial nitric oxide synthase protein expression (88.89±4.98 vs. 117.98±16.49, P 〈0.05) and nitric oxide production ((25.11±5.27) Iμmol/L vs. (37.72±7.10) μmol/L, P 〈0.05) were remarkably lower in endothelial cells from the chronic obstructive pulmonary disease group than the control. Conclusion Circulating endothelial progenitor cells were decreased and functionally impaired in patients with chronic obstructive pulmonary disease.展开更多
基金Supported by the "Mecenatura" grant of Debrecen University 3/1999 to K. P., and grants from the Hungarian Ministry of Health (ETT 41/2000 to I. A., and ETT 026/2003 to F. E.) from the Hungarian Science Research Fund (OTKA 043296 to F. E.).
文摘AIM: To study the expression of endothelial and inducible nitric oxide synthases (eNOS and iNOS) and their role in inflammatory bowel disease (IBD). METHODS: We examined the effect of sera obtained from patients with active Crohn's disease (CD) and ulcerative colitis (UC) on the function and viability of human umbilical vein endothelial cells (HUVEC). HUVECs were cultured for 0-48 h in the presence of a medium containing pooled serum of healthy controls, or serum from patients with active CD or UC. Expression of eNOS and iNOS was visualized by immunofluorescence, and quantified by the densitometry of Western blots. Proliferation activity was assessed by computerized image analyses of Ki-67 immunoreactive cells, and also tested in the presence of the NOS inhibitor, 10^-4 mol/L L-NAME. Apoptosis and necrosis was examined by the annexin-V-biotin method and by propidium iodide staining, respectively. RESULTS: In HUVEC immediately after exposure to UC, serum eNOS was markedly induced, reaching a peak at 12 h. In contrast, a decrease in eNOS was observed after incubation with CD sera and the eNOS level was minimal at 20 h compared to control (18%±16% vs 23%± 15% P〈0.01). UC or CD serum caused a significant increase in iNOS compared to control (UC: 300%±21%; CD: 275% ± 27% vs 108% ± 14%, P〈0.01). Apoptosis/necrosis characteristics did not differ significantly in either experiment. Increased proliferation activity was detected in the presence of CD serum or after treatment with L-NAME. Cultures showed tube-like formations after 24 h treatment with CD serum. CONCLUSION: IBD sera evoked changes in the ratio of eNOS/iNOS, whereas did not influence the viability of HUVEC. These involved down-regulation of eNOS and up-regulation of iNOS simultaneously, leading to increased proliferation activity and possibly a reduced antiinflammatory protection of endothelial cells.
基金Supported by Science Fund for Youths(No.81300763)
文摘AIM: To clarify how the endothelial nitric oxide synthase (eNOS, NOS3) make effect on outflow facility through the trabecular meshwork (TM). METHODS: Inhibition of NOS3 gene expression in human TM cells were conducted by three siRNAs. Then the mRNA and protein levels of NOS3 in siRNA-treated and negative control (NC) cells were determined, still were the collagen, type IV, alpha 1 (COL4A1) and fibronectin 1 by real-time PCR and Western blot analysis. In addition, NOS3 concentrations in culture supernatant fluids of TM cells were measured. Cell cycle and cell apoptosis analysis were performed using flow cytometry. RESULTS: The mRNA level of NOS3 was decreased by three different siRNA interference, similar results were obtained not only of the relative levels of NOS3 protein, but also the expression levels of COL4A1 and fibronectin 1. The number of cells in S phase was decreased, while contrary result was obtained in G2 phase. The number of apoptotic cells in siRNA-treated groups were significant increased compared to the NC samples. CONCLUSION: Abnormal NOS3 expression can make effects on the proteins levels of extracellular matrix component (e.g. fibronectin 1 and COL4A1). Reduced NOS3 restrains the TM cell cycle progression at the G2/ M-phase transition and induced cell apoptosis.
文摘This study investigated the changes in human umbilical vein endothelial cells (HUVECs) induced by overexpression of endothelial nitric oxide synthase traffic inducer (NOSTRIN) and its role in cellular injury. Recombinant NOSTRIN-expressing and empty vectors were transfected into cultured HUVECs, and factor Ⅷ-related antigen was examined by using immunohistochemical analysis. Growth curves were generated for both transfected and untransfected cells and these indicated that the prolifera- tive ability of cells overexpressing NOSTRIN was significantly decreased. The expression of NOSTRIN and eNOS proteins was detected by using Western blot analysis, endothelial NOS (eNOS) activity was assayed by using spectrophotometry, and NO2-/NO3- levels were measured usin~ nitrate reductase. Immunohistochemical analysis demonstrated that all groups expressed NOSTRIN in the plasma mem- brane and cytoplasm, and Western blot analysis confirmed that NOSTR1N levels were significantly higher in cells transfected with the NOSTR1N plasmid (P〈0.01). The activity of eNOS and the levels of NO2-/NO3 were significantly decreased in NOSTRIN overexpressing cells as compared with empty vector and untransfected cells (P〈0.01 and P〈0.01, respectively). Morphological and ultrastructural changes were observed under light and electron microscopy, and it was found that NOS- TRIN-overexpressing cells were elongated with deformities of the karyotheca, injury to the plasma membrane, increased lipids in the cytoplasm, and shortened microvilli. This study showed that overex- pression of NOSTRIN had a significant effect on eNOS activity in HUVECs and resulted in significant cellular damage.
文摘Objective To examine the effects of insulin on cell proliferation, nitric oxide (NO) release and nitric oxide synthase (NOS) gene expression in bovine aortic endothelial cells ( BAEC ) . Methods The mi togenesis was assessed by MTT method; the products of NO in the culture media, by Griess reaction; and the levels of NOS mRNA in BAEC , by RT/PCR tech nique. Results BAEC were not responsive to the growth-promoting effects of insulin. Stimulation with insulin resulted a dose-dependent rise of NO in the culture supernatants 2h later, with a maximum at 12~24h and a decline at 24h. This rise was inhibited by an inhibitor of NOS (L-NAME). NOS mRNA increased slightly in BAEC without statistical significance. Conelu sion The study suggested that the insulin-induced NO release might be caused directly by NOS activation.
文摘Background: Low shear stress caused by disturbed or turbulent flow at arterial branch points is known to associate with atherosclerosis. However, shear stress at the venous valve location and its association with deep vein thrombosis are less understood due to the complex and poorly understood bi-directional flow in the valve pocket region. We investigated how venous endothelial cells respond to flow shear stress around the venous valve region using a novel in vitro system that mimics venous flow. Results: Human umbilical vein EAhy. 926 cells were cultured on a flexible silastic membrane that mimicked venous tissue. Confluent cells were exposed to sinusoidal uni-and bi-directional pulsatile shear stress (0.1 to 1 dyne/cm2) for up to 6 h. Western-blot analyses indicated that endothelial nitric oxide (eNOS) expression levels decreased regardless of all tested flow patterns, stress magnitude, and shearing time. In contrast, the expression levels of inhibitor of κB (kappa B) and α (alpha)-tubulin were unaffected by the shear stress. Conclusions: Our results indicate that shear stress causes a decrease specifically in eNOS expression, suggesting that it may play a significant role in regulating inflammation related protein expression in endothelial cells.
基金supported by grants from National Natural Sciences Foundation of China (No. 30430320 and 30770882)National 973 Project (No. 2007CB512004)
文摘3-hydroxy-3-methylgulutaryl-coenzyme A (HMG-CoA) reductase inhibitors or statins are a kind of lipid-lowering agents and have been used for the prevention and treatment of Cardiovascular diseases. Recent studies suggested that statins, besides lowering cholesterol, may protect vessels by enhancing the activity of endothelial nitric oxide synthase (eNOS). In the present study, we investigated if simvastatin increases eNOS activity through its phosphorylation in 293 cells (293-eNOS) with stable expression of eNOS. The results showed that incubation of 293-eNOS cells with simvastatin (10 μm/L) for 2 h significantly increased in the activity of eNOS as shown by the conversion of L-arginine to L-citrulline (2889.70±201.51 versus 5630.18+218.75 pmol/min . mg proteins) (P〈0.01). Western blotting revealed that simvastatin increased phosphorylation of eNOS at 1177 (ser) and also 495 (thr) but did not affect the overall expression of eNOS or inducible NOS. Further study found that simvastatin raised phosphorylation levels of Akt and AMPK, and such effect could be antagonized by Akt inhibitor or AMPK inhibitor. These results suggest that simvastatin could stimulate,the activity of eNOS via its phosphorylation by Akt and AMPK, which provides a new mechanism, other than lipid-lowering effect, for the cardiovascular protection of statins.
文摘Objective To find out whether dexamethasone induces an uncoupling of the endothelial nitric oxide synthase (eNOS). Methods & Results A major cause of eNOS uncoupling is a deficiency of its cofactor tetrahydrobiopterin (BH4). Treatment of human EA.hy 926 endothelial cells with dexamethasone decreased mRNA and protein expression of both BH4-synthesizing enzymes: GTP cyclobydrolase I and dihydrofolate reductase. Consistently, a concentration- and time-dependent reduction of BH4, dihydrobiopterin (BH2) as well as BH4:BH2 ratio was observed in dexamethasone-treated cells. Surprisingly, no evidence for eNOS uncoupling was found. We then analyzed the expression and phosphorylation of the eNOS enzyme. Dexamethasone treatment led to a down-regulation of eNOS protein and a reduction of eNOS phosphorylation at serine 1177. A reduction of eNOS expression may lead to a relatively normal BH4: eNOS molar ratio in dexamethasone-treated cells. Because the BH4-eNOS stoichiometry rather than the absolute BH4 amount is the key determinant of eNOS functionality (i.e., coupled or uncoupled), the down-regulation of eNOS may represent an explanation for the absence of eNOS uncoupling. Phosphorylation of eNOS at serine 1177 is needed for both the NO-producing activity of the coupled eNOS and the superoxide-producing activity of the uncoupled eNOS. Thus, a reduction of serine 1177 phosphorylation may render a potentially uncoupled eNOS hardly detectable. Conclusions Although dexamethasone reduces BH4 levels in endothelial cells, eNOS uncoupling is not evident. The reduction of NO production in dexamethasone-treated endothelial cells is mainly attributable to reduced eNOS expression and decreased eNOS phosphorylation at serine 1177.
文摘AIM:To investigate the effect of prednisolone,a synthetic glucocorticoid used in inflammatory diseases,on the growth of cultured osteosarcoma cells.METHODS:Two osteosarcoma cell lines with different degree of differentiation were used.SaOS2 show a rather mature phenotype,while U2 OS are negative for almost all osteoblastic markers.The cells were exposed to different concentrations of prednisolone(1-9 μmol/L) with or without antioxidants or the inhibitor of inducible nitric oxide synthase(i NOS) l-N6-(iminoethyl)-lysine-HCl(L-NIL).Cell growth was assessed by counting viable cells.The production of nitric oxide(NO) was measured in the conditioned media by the Griess method.The production of reactive oxygen species was quantified using 2'-7'-dichlorofluorescein diacetate.Western blot with specific antibodies against NOSs was performed on cell extracts.RESULTS:Prednisolone inhibited SaOS2 cell growth in a dose dependent manner.No significant effects were observed in U2OS.The inhibition of SaOS2 growth is not due to oxidative stress,because antioxidants do not rescue cell proliferation.Since high concentrations of NO inhibit bone formation,we also measured NO and found it induced in SaOS2,but not in U2 OS,exposed to prednisolone,because of the upregulation of i NOS as detected by western blot.Therefore,we treated SaOS2 with prednisolone in the presence or in the absence of L-NIL.L-NIL prevented NO release induced by prednisolone at all the concentrations apart from 9 μmol/L.At the same concentrations,we found that L-NIL rescued SaOS2 growth after exposure to prednisolone.In U2 OS cells,prednisolone did not induce NO production nor affected cell growth.All together,these data indicate that a link exists between increased amounts of NO and growth inhibition in response to prednisolone in SaOS2.CONCLUSION:Prednisolone inhibited SaOS2 proliferation by increasing the release of NO through the upregulation of i NOS,while no effect was exerted on U2OS.
基金State Key Development Program of Basic Research (No. G2000057004) Key Project of National Natural Science Foundation (No 39830400)+1 种基金 National Natural Science Foundation of China (No. 30070735) Key Project of Science and Technology of Guangdong Provin
文摘Objective:To examine the role of p38 mitogen-activated protein kinase (MAPK) in NO production and Inos expression in human endothelial cells stimulated by lipopolysaccharide (LPS). Methods: The NO level in the supernatant of the cell culture media was measured with Griess method, expressions of Inos protein and Mrna in vitro cultured endothelial cell line ECV304 were detected with immunofluorescence analysis and reverse transcriptase-PCR respectively. Immunokinase assay was employed to measure P38mapk activity. Results: Compared with the basal level of Inos expression and NO production, the NO level and the expressions of Inos Mrna and protein in the cells were increased after LPS stimulation. P38mapk activity in ECV304 cells exhibited a marked increase at 15 min after LPS stimulation, lasting for about 45 min before gradually decline. The Inos protein and Mrna expressions induced by LPS stimulation was significantly inhibited by SB203580 [4-(4-fluorophenyl)-2-(4- methylsulfinylphenyl)-5-(4-pyridyl) imidazole], a highly specific inhibitor of p38 MAPK. Conclusion: p38 MAPK plays an important role in iNOS expression and NO production in ECV304 cells, and the inhibition of the signal transduction pathway can be effective to reduce the production of iNOS and other cytokines, and therefore constitutes a useful strategy for treating septic shock or inflammation.
基金supported by a Grant from the Sci&Tech Research Project Foundation of Public Health Department of Hubei Province(No.NX200421)。
文摘To study the relationship of the polymorphism of endothelial nitric oxide synthase(eNOS)gene and blood pressure,lipid profiles and blood glucose level.By using PCR-RFLP,the eNOS Glu298Asp gene polymorphism was detected in 184 patients with essential hypertension and 196 matched healthy individuals with normal blood pressure.Taking into account eNOS Glu298Asp poly-morphisms,the relationship of blood pressure with trigly-cerides(TG),total cholesterol(TC),high density lipoprotein(HDL),low density lipoprotein(LDL)and blood glucose level was analyzed.The distribution of eNOS Glu298Asp polymorphism had no significant differ-ence between different blood pressure groups and gender groups,but there was a significant difference between dif-ferent age groups,diastolic blood pressure groups or BMI groups(P<0.05).Asp/Asp genotype significantly increased the risk of hypertension in individuals with serum TC above 5.4 mmol/L(P=0.03,OR=52.65).eNOS Glu298Asp polymorphism and serum lipid could synergis-tically modulate the blood pressure.eNOS Asp/Asp geno-type could significantly increase the risk of hypertension in individuals with serum TC over 5.4 mmol/L.eNOS Glu298Asp in combination with serum TC could be used to predict the risk of hypertension.
基金This work was supported by grants from National Natural Science Foundation of China (No. 81070039, No. 81270100 and No. 81200026) and from the Natural Science Foundation of Hunan Province (No. 2008FJ3152 and No. 2011 SK3237).
文摘Background It has been widely demonstrated that endothelial progenitor cells are involved in several diseases and that they have therapeutic implications. In order to define the altered pulmonary vascular homeostasis in chronic obstructive pulmonary disease, we sought to observe the level and functions of circulating endothelial progenitor calls in patients with chronic obstructive pulmonary disease. Methods The total study population included 20 patients with chronic obstructive pulmonary disease and 20 control subjects. The number of circulating endothelial progenitor cells (CD34+/CD133+/IVEGFR-2+cells) was counted by flow cytometry. Circulating endothelial progenitor cells were also cultured in vitro and characterized by uptake of Dil- acLDL, combining with UEA-I, and expression of von Willebrand factor and endothelial nitric oxide synthase. Adhesion, proliferation, production of nitric oxide, and expression of endothelial nitric oxide synthase and phosphorylated-endothelial nitric oxide synthase were detected to determine functions of circulating endothelial progenitor cells in patients with chronic obstructive pulmonary disease. Results The number of circulating endothelial progenitor cells in the chronic obstructive pulmonary disease group was lower than in the control group: (0.54±0.16)% vs. (1.15±0.57)%, P 〈0.05. About 80% of adherent peripheral blood mononuclear cells cultured in vitro were double labeled with Dil-acLDL and UEA-I. The 92% and 91% of them were positive for von Willebrand factor and endothelial nitric oxide synthase, respectively. Compared with the control, there were significantly fewer adhering endothelial progenitor cells in chronic obstructive pulmonary disease patients: 18.7±4.8/field vs. 45.0±5.9/field, P 〈0.05. The proliferation assay showed that the proliferative capacity of circulating endothelial progenitor cells from chronic obstructive pulmonary disease patients was significantly impaired: 0.135±0.038 vs. 0.224±0.042, P 〈0.05. Furthermore, nitric oxide synthase (112.06±10.00 vs. 135.41±5.38, P 〈0.05), phosphorylated endothelial nitric oxide synthase protein expression (88.89±4.98 vs. 117.98±16.49, P 〈0.05) and nitric oxide production ((25.11±5.27) Iμmol/L vs. (37.72±7.10) μmol/L, P 〈0.05) were remarkably lower in endothelial cells from the chronic obstructive pulmonary disease group than the control. Conclusion Circulating endothelial progenitor cells were decreased and functionally impaired in patients with chronic obstructive pulmonary disease.