AIM To clarify the relationship between the Insulin like growth factor Ⅱ (IGF Ⅱ), IGF Ⅱ receptor and chronic liver diseases and to provide evidences for basic and clinical researches for exploring the potential...AIM To clarify the relationship between the Insulin like growth factor Ⅱ (IGF Ⅱ), IGF Ⅱ receptor and chronic liver diseases and to provide evidences for basic and clinical researches for exploring the potential mechanisms of human hepatocellular carcinoma (HCC). METHODS The poly (A)+ mRNA translation of IGF Ⅱ and IGF Ⅱ receptor in dysplasia liver cell (DLC n =10), liver cirrhosis (LC n =9) and chronic active hepatitis (CAH n =9) were analyzed with RNA gel electrophoresis, Northern blot and hybridization using human IGF Ⅱ and IGF Ⅱ receptor DNA probes labelled with 32 P through Nick translation and autoradiography. RESULTS The overexpression of IGF Ⅱ in DLC (10/10, 100%) was apparently higher than that in CAH (3/9, 33%) and LC (3/9, 33%), ( P <0 01). The overexpression of IGF Ⅱ receptor in DLC (7/10, 70%) was significantly higher than that in CAH (2/9, 22%) and LC (3/9, 33%), respectively. The data of HBV infection from different chronic liver diseases were analyzed. CONCLUSION The overexpression of IGF Ⅱ and IGF Ⅱ receptor in DLC was related to the preceeding of malignant phenotype of hepatocyte, which provided a diagnostic value for early detection of hepatocellular carcinoma (HCC). Persistent HBV infection is strongly associated with abnormal activation of IGF Ⅱ and IGF Ⅱ receptor, which might indicate a stimulating mechanism of autocrine or paracrine growth involved in live cell carcinogenesis.展开更多
Hepatocellular carcinoma(HCC) is the third leading cause of cancer-related deaths worldwide. Only 30%-40% of the patients with HCC are eligible for curative treatments, which include surgical resection as the first op...Hepatocellular carcinoma(HCC) is the third leading cause of cancer-related deaths worldwide. Only 30%-40% of the patients with HCC are eligible for curative treatments, which include surgical resection as the first option, liver transplantation and percutaneous ablation. Unfortunately, there is a high frequency of tumor recurrence after surgical resection and most HCC seem resistant to conventional chemotherapy and radiotherapy. Sorafenib, a multi-tyrosine kinase inhibitor, is the only chemotherapeutic option for patients with advanced hepatocellular carcinoma. Patients treated with Sorafenib have a significant increase in overall survival of about three months. Therefore, there is an urgent need to develop alternative treatments. Due to its role in cell growth and development, the insulin-like growth factor system is commonly deregulated in many cancers. Indeed, the insulin-like growth factor(IGF) axis has recently emerged as a potential target for hepatocellular carcinoma treatment. To this aim, several inhibitors of the pathway have been developed suchas monoclonal antibodies, small molecules, antisense oligonucleotides or small interfering RNAs. However recent studies suggest that, unlike most tumors, HCC development requires increased signaling through insulin growth factor Ⅱ rather than insulin growth factor Ⅰ. This may have great implications in the future treatment of HCC. This review summarizes the role of the IGF axis in liver carcinogenesis and the current status of the strategies designed to target the IGF-Ⅰ signaling pathway for hepatocellular carcinoma treatment.展开更多
The influence of early-stage intensive insulin therapy on the plasma levels of vascular en- dothelial growth factor (VEGF) and the related parameters in patients with severe trauma and the clini- cal implication wer...The influence of early-stage intensive insulin therapy on the plasma levels of vascular en- dothelial growth factor (VEGF) and the related parameters in patients with severe trauma and the clini- cal implication were investigated. Sixty-four cases of severe trauma (injury severity score 〉20) with stress hyperglycemia (blood glucose 〉9 mmol/L) were randomly divided into intensive insulin therapy group and conventional therapy group. ELISA method, radioimmunoassay and density gradient grada- tion one-step process were used to determine plasma VEGF, endothelin-1 (ET-1), and the number of circulating endothelial cells (CECs) at the day of 0, 2, 3, 5 and 7 after admission. Simultaneously, the changes of CRP concentration in plasma were monitored to evaluate inflammatory response. The results showed that plasma levels of observational indexes in patients receiving early-stage intensive insulin therapy were all significantly lower than those in conventional therapy groups 2, 3, 5 and 7 days after admission [for VEGF (ng/L), 122.2±23.8 vs. 135.9±26.5, 109.6±27.3 vs. 129.0±18.4, 88.7±18.2 vs. 102.6±27.3, 54.2±26.4 vs. 85.7±35.2, P〈0.05, 0.01, 0.05, 0.05 respectively; for ET-1 (ng/L), 162.8±23.5 vs. 173.7±13.2, 128.6±17.5 vs. 148.8±22.4, 96.5±14.8 vs. 125.7±14.8, 90.7±16.9 vs. 104.9±22.5, P〈0.05, 0.01, 0.01, 0.01 respectively; for CRP (mg/L), 23.2±13.8 vs. 31.9±16.5, 13.6±17.3 vs. 23.5±18.4, 8.7±10.2 vs. 15.6±13.3, 5.2±9.4 vs. 10.7±11.2, all P〈0.05; for CECs (/0.9 μL), 10.9±5.6 vs. 13.9±6.2, 8.5±4.9 vs. 11.3±5.3, 6.3±6.4 vs. 9.4±5.7, 4.8±7.1 vs. 7.8±4.8, all P〈0.05]. It was concluded that intensive insulin therapy could antagonize the endothelium injury after trauma and reduce inflammation response quickly, which was one of important mechanisms by which intensive insulin therapy improves the prognosis of trauma patients.展开更多
Redox balance is fundamentally important for physiological homeostasis. Pathological factors that disturb this dedicated balance may result in oxidative stress, leading to the development or aggravation of a variety o...Redox balance is fundamentally important for physiological homeostasis. Pathological factors that disturb this dedicated balance may result in oxidative stress, leading to the development or aggravation of a variety of diseases, including diabetes mellitus, cardiovascular diseases, metabolic syndrome as well as inflammation, aging and cancer. Thus, the capacity of endogenous free radical clearance can be of patho-physiological importance; in this regard, the major reactive oxygen species defense machinery, the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) system needs to be precisely modulated in response to pathological alterations. While oxidative stress is among the early events that lead to the development of insulin resistance, the activation of Nrf2 scavenging capacity leads to insulin sensitization. Furthermore, Nrf2 is evidently involved in regulating lipid metabolism. Here we summarize recent findings that link the Nrf2 system to metabolic homeostasis and insulin action and present our view that Nrf2 may serve as a novel drug target for diabetes and its complications.展开更多
The insulin/insulin-like growth factor 1 (IGF-1) signaling pathway is evolutionary conserved in diverse speciesincluding C.elegans, saccharomyces cerevisiae, Drosophila melanogaster, rodents and humans, which is invol...The insulin/insulin-like growth factor 1 (IGF-1) signaling pathway is evolutionary conserved in diverse speciesincluding C.elegans, saccharomyces cerevisiae, Drosophila melanogaster, rodents and humans, which is involved in many interrelated functions that are necessary for metabolism, growth and reproduction. Interestingly, more and more research has revealed that insulin/IGF-1 signaling pathway plays a pivotal role in the regulation of longevity. Generally, disruption of the power of this pathway will extend longevity in species ranging from C.elegansto humans. The role of insulin/IGF-1 in longevit yis probably related to stress resistance. Although the underlying mechanisms of longevity are not fully understood, the Insulin/IGF-1 signaling pathway has attracted substantial attention and it will be a novel target to prevent or postpone age-related diseases and extend life span. In this review, we mainly focus on the similar constitution and role of insulin/IGF-1 signaling pathway in C.elegans, saccharomyces cerevisiae, rodents and humans.展开更多
Although little attention has been paid to cognitive and emotional dysfunctions observed in patients after spinal co rd injury,several reports have described impairments in cognitive abilities.Our group also has contr...Although little attention has been paid to cognitive and emotional dysfunctions observed in patients after spinal co rd injury,several reports have described impairments in cognitive abilities.Our group also has contributed significantly to the study of cognitive impairments in a rat model of spinal co rd injury.These findings are very significant because they demonstrate that cognitive and mood deficits are not induced by lifestyle changes,drugs of abuse,and combined medication.They are related to changes in brain structures involved in cognition and emotion,such as the hippocampus.Chronic spinal cord injury decreases neurogenesis,enhances glial reactivity leading to hippocampal neuroinflammation,and trigge rs cognitive deficits.These brain distal abnormalities are recently called te rtiary damage.Given that there is no treatment for Tertiary Damage,insulin growth factor 1 gene therapy emerges as a good candidate.Insulin growth factor 1 gene thera py recove rs neurogenesis and induces the polarization from pro-inflammato ry towards anti-inflammatory microglial phenotypes,which represents a potential strategy to treat the neuroinflammation that supports te rtiary damage.Insulin growth factor 1 gene therapy can be extended to other central nervous system pathologies such as traumatic brain injury where the neuroinflammatory component is crucial.Insulin growth factor 1 gene therapy could emerge as a new therapeutic strategy for treating traumatic brain injury and spinal cord injury.展开更多
Diabetes is the most prevalent and serious metabolic disease, and the number of diabetic patients worldwide is increasing. The reduction of insulin biosynthes is in pancreatic E-cells is closely associated with the on...Diabetes is the most prevalent and serious metabolic disease, and the number of diabetic patients worldwide is increasing. The reduction of insulin biosynthes is in pancreatic E-cells is closely associated with the onset and progression of diabetes, therefore, it is important to search for ways to induce insulin-producing cells in non-E-cells. In the present study, it has been reported that activin A and a basic fibroblast growth factor 2 ( FGF2), can synergistically increase the insulin mRNA level, in both mouse El4 striatal primary cell cultures and the hippocampal neuronal cell line HT22. Activin A and FGF2 can jointly stimulate the nuclear translocation of Smad3 and specifically activate ERK1/2. It is interesting to note that a specific inhibitor for MEK, U0126, can efficiently block the induction of an insulin promoter activity by activin A and FGF2. This indicates that activin A collaborates with FGF2, giving a signal to induce the insulin gene through selective activation of the ERK-type MAP kinase and Smad3 in mouse striatal and HT22 cells. These data suggest that activin A may act in concert with FGF2 for the development of insulin -positive neurons展开更多
OBJECTIVE: To study the value of serum insulin-like growth factor binding protein-3 (IGFBP-3) levels in differential diagnosis of growth hormone deficiency (GHD). METHODS: To measure serum IGFBP-3 levels by RIA in nor...OBJECTIVE: To study the value of serum insulin-like growth factor binding protein-3 (IGFBP-3) levels in differential diagnosis of growth hormone deficiency (GHD). METHODS: To measure serum IGFBP-3 levels by RIA in normal children and adolescents, GHD children and short-stature children without GHD. RESULTS: Serum level of IGFBP-3 in 129 children with untreated GHD and with no pubertal development was 1.6 +/- 0.9 mg/L, which was less than that in normal group of the same age, but overlapped with the normal children in Tanner stage I. After six-month treatment with recombinant human growth hormone (rhGH), serum level of IGFBP-3 in 59 GHD significantly increased from 1.3 +/- 0.7 mg/L to 2.7 +/- 0.9 mg/L, accompanied by an increase of body heights, growth velocities and serum level of IGF-1. Serum level of IGFBP-3 in 55 short-stature children without GHD was 3.3 +/- 2.2 mg/L, which was not significantly different from that in normal group. CONCLUSION: Serum IGFBP-3 level can reflect the status of GH secretion in children with GHD and is a useful marker for differential diagnosis of GHD.展开更多
Brain integrity and cognitive aptitude are often impaired in patients with diabetes mellitus, presumably a result of the metabolic complications inherent to the disease. However, an increasing body of evidence has dem...Brain integrity and cognitive aptitude are often impaired in patients with diabetes mellitus, presumably a result of the metabolic complications inherent to the disease. However, an increasing body of evidence has demonstrated the central role of insulin-like growth factor 1(IGF1) and its relation to sex hormones in many neuroprotective processes. Both male and female patients with diabetes display abnormal IGF1 and sexhormone levels but the comparison of these fluctuations is seldom a topic of interest. It is interesting to note that both IGF1 and sex hormones have the ability to regulate phosphoinositide 3-kinase-Akt and mitogen-activated protein kinases-extracellular signal-related kinasesignaling cascades in animal and cell culture models of neuroprotection. Additionally, there is considerable evidence demonstrating the neuroprotective coupling of IGF1 and estrogen. Androgens have also been implicated in many neuroprotective processes that operate on similar signaling cascades as the estrogen-IGF1 relation. Yet, androgens have not been directly linked to the brain IGF1 system and neuroprotection. Despite the sex-specific variations in brain integrity and hormone levels observed in diabetic patients, the IGF1-sex hormone relation in neuroprotection has yet to be fully substantiated in experimental models of diabetes. Taken together, there is a clear need for the comprehensive analysis of sex differences on brain integrity of diabetic patients and the relationship between IGF1 and sex hormones that may influence brain-health outcomes. As such, this review will briefly outline the basic relation of diabetes and IGF1 and its role in neuroprotection. We will also consider the findings on sex hormones and diabetes as a basis for separately analyzing males and females to identify possible hormone-induced brain abnormalities. Finally, we will introduce the neuroprotective interplay of IGF1 and estrogen and how androgen-derived neuroprotection operates through similar signaling cascades. Future research on both neuroprotection and diabetes should include androgens into the interplay of IGF1 and sex hormones.展开更多
AIM:To investigate the expression of insulin-like growth factor-1(IGF-1)/insulin-like growth factor-1 receptor(IGF-1R)in colorectal cancer(CRC)tissues and to analyze their correlation with lymphangiogenesis and lympha...AIM:To investigate the expression of insulin-like growth factor-1(IGF-1)/insulin-like growth factor-1 receptor(IGF-1R)in colorectal cancer(CRC)tissues and to analyze their correlation with lymphangiogenesis and lymphatic metastasis.METHODS:Immunohistochemistry was used to evaluate IGF-1 and IGF-1R expression and lymphatic vessel density(LVD)in 40 CRC specimens.The correlation between IGF-1/IGF-1R and LVD was investigated.Effects of IGF-1 on migration and invasion of CRC cells were examined using transwell chamber assays.A LoVo cell xenograft model was established to further detect the role of IGF-1 in CRC lymphangiogenesis in vivo. RESULTS:Elevated IGF-1 and IGF-1R expression in CRC tissues was correlated with lymph node metastasis(r=0.715 and 0.569,respectively,P<0.05)and tumor TNM stage(r=0.731 and 0.609,P<0.05).A higher LVD was also found in CRC tissues and was correlated with lymphatic metastasis(r=0.405,P<0.05).A positive correlation was found between LVD and IGF-1R expression(r=0.437,P<0.05).Transwell assays revealed that IGF-1 increased the migration and invasion of CRC cells.In vivo mouse studies showed that IGF-1 also increased LVD in LoVo cell xenografts.CONCLUSION:IGF-1/IGF-1R signaling induces tumorassociated lymphangiogenesis and contributes to lymphatic metastasis of CRC.展开更多
Whether cultured bovine trabecular meshwork cells and trabecular tissue ex vivo express insulin like growth factor I (IGF Ⅰ) messenger RNA (mRNA) and protein was investigated. Total RNA of cultured bovine trabecul...Whether cultured bovine trabecular meshwork cells and trabecular tissue ex vivo express insulin like growth factor I (IGF Ⅰ) messenger RNA (mRNA) and protein was investigated. Total RNA of cultured bovine trabecular meshwork cells as well as trabecular meshwork tissue freshly excised from bovine eyes was extracted, and reverse transcriptase polymerase chain reaction (RT PCR) was used to detect IGF Ⅰ mRNA. RT PCR product was verified by sequencing. Immunohistochemical stain was used to detect IGF Ⅰ protein. The results showed that a single PCR amplified product was obtained, and the sequence was homologous to the known sequence.. IGF Ⅰ immunostain was positive in the cytoplasm of trabecular meshwork cells. It was concluded that trabecular meshwork cells produce IGF Ⅰ and contribute to the presence of IGF Ⅰ in trabecular meshwork microenvironment as well as aqueous humor. Trabecular meshwork cells were affected by IGF Ⅰ not only through paracrine, but also autocrine action. Whether abnormal down regulations in IGF Ⅰ production may contribute to the pathogenesis of primary open angle glaucoma and the possibility of promoting the autocrine action of IGF Ⅰ by trabecular meshwork cells to treat the diesease is worth further investigation.展开更多
BACKGROUND Type 2 diabetes mellitus(T2DM)is a chronic metabolic disease featured by insulin resistance(IR)and decreased insulin secretion.Currently,vitamin D deficiency is found in most patients with T2DM,but the rela...BACKGROUND Type 2 diabetes mellitus(T2DM)is a chronic metabolic disease featured by insulin resistance(IR)and decreased insulin secretion.Currently,vitamin D deficiency is found in most patients with T2DM,but the relationship between vitamin D and IR in T2DM patients requires further investigation.AIM To explore the risk factors of IR and the effects of vitamin D supplementation on glucose and lipid metabolism in patients with T2DM.METHODS Clinical data of 162 T2DM patients treated in First Affiliated Hospital of Harbin Medical University between January 2019 and February 2022 were retrospectively analyzed.Based on the diagnostic criteria of IR,the patients were divided into a resistance group(n=100)and a non-resistance group(n=62).Subsequently,patients in the resistance group were subdivided to a conventional group(n=44)or a joint group(n=56)according to the treatment regimens.Logistic regression was carried out to analyze the risk factors of IR in T2DM patients.The changes in glucose and lipid metabolism indexes in T2DM patients with vitamin D deficiency were evaluated after the treatment.RESULTS Notable differences were observed in age and body mass index(BMI)between the resistance group and the non-resistance group(both P<0.05).The resistance group exhibited a lower 25-hydroxyvitamin D_(3)(25(OH)D_(3))level,as well as notably higher levels of 2-h postprandial blood glucose(2hPG),fasting blood glucose(FBG),and glycosylated hemoglobin(HbA1c)than the non-resistance group(all P<0.0001).Additionally,the resistance group demonstrated a higher triglyceride(TG)level but a lower high-density lipoprotein-cholesterol(HDL-C)level than the non-resistance group(all P<0.0001).The BMI,TG,HDL-C,25(OH)D_(3),2hPG,and HbA1c were found to be risk factors of IR.Moreover,the posttreatment changes in levels of 25(OH)D_(3),2hPG,FBG and HbA1c,as well as TG,total cholesterol,and HDL-C in the joint group were more significant than those in the conventional group(all P<0.05).CONCLUSION Patients with IR exhibit significant abnormalities in glucose and lipid metabolism parameters compared to the noninsulin resistant group.Logistic regression analysis revealed that 25(OH)D_(3)is an independent risk factor influencing IR.Supplementation of vitamin D has been shown to improve glucose and lipid metabolism in patients with IR and T2DM.展开更多
AIM: To investigate whether the reduction of stem cell factor (SCF) is mediated by decreased endogenous insulin-like growth factor (IGF)-1 in diabetic rat colon smooth muscle. METHODS: Sixteen Sprague-Dawley rats were...AIM: To investigate whether the reduction of stem cell factor (SCF) is mediated by decreased endogenous insulin-like growth factor (IGF)-1 in diabetic rat colon smooth muscle. METHODS: Sixteen Sprague-Dawley rats were randomly divided into two groups: control group and streptozotocin-induced diabetic group. After 8 wk of streptozotocin administration, colonic motility function and contractility of circular muscle strips were measured. The expression of endogenous IGF-1 and SCF was tested in colonic tissues. Colonic smooth muscle cells were cultured from normal adult rats. IGF-1 siRNA transfection was used to investigate whether SCF expression was affected by endogenous IGF-1 expression in smooth muscle cells, and IGF-1 induced SCF expression effects were studied. The effect of high glucose on the expression of endogenous IGF-1 and SCF was also investigated. RESULTS: Diabetic rats showed prolonged colonic transit time (252 ± 16 min vs 168 ± 9 min, P < 0.01) and weakness of circular muscle contraction (0.81 ± 0.09 g vs 2.48 ± 0.23 g, P < 0.01) compared with the control group. Endogenous IGF-1 and SCF protein expression was significantly reduced in the diabetic colonic muscle tissues. IGF-1 and SCF mRNA expression also showed a paralleled reduction in diabetic rats. In the IGF-1 siRNA transfected smooth muscle cells, SCF mRNA and protein expression was significantly decreased. IGF-1 could induce SCF expression in a concentration and time-dependent manner, mainly through the extracellular-signal-regulated kinase 1/2 signal pathway. High glucose inhibited endogenous IGF-1 and SCF expression and the addition of IGF-1 to the medium reversed the SCF expression. CONCLUSION: Myopathy may resolve in colonic motility dysfunction in diabetic rats. Deficiency of endogenous IGF-1 in colonic smooth muscle cells leads to reduction of SCF expression.展开更多
Aim: To determine whether adenoviral gene transfer of insulin like growth factor-1 (IGF-1) to the penis of streptozotocin (STZ)-induced diabetic rats could improve erectile capacity. Methods: The STZ diabetic ra...Aim: To determine whether adenoviral gene transfer of insulin like growth factor-1 (IGF-1) to the penis of streptozotocin (STZ)-induced diabetic rats could improve erectile capacity. Methods: The STZ diabetic rats were transfected with AdCMV-βgal or AdCMV-IGF-1. These rats underwent cavernous nerve stimulation to assess erectile function and their responses were compared with those of age-matched control rats 1 to 2 days after transfection. In control and transfected STZ diabetic rats, IGF-1 expression were examined by reverse transcription polymerase chain reaction (RT-PCR), Western blot and histology. The penis β-galactosidase activity and localization of the STZ diabetic rats were also determined. Results: One to two days after transfection, the β-galactosidase was found in the smooth muscle cells of the diabetic rat penis transfected with AdCMV-βgal. One to 2 days after administration of AdCMV- IGF-1, the cavernosal pressure, as determined by the ratio of maximal intracavernous pressure-to-mean arterial pressure (ICP/MAP) and total intracavernous pressure (ICP), was increased in response to cavernous nerve stimulation. Transgene expression was confirmed by RT-PCR, Western blot and histology. Conclusion: Gene transfer of IGF-1 significantly increased erectile function in the STZ diabetic rats. These results suggest that in vivo gene transfer of IGF- 1 might be a new therapeutic intervention for the treatment of erectile dysfunction (ED) in the STZ diabetic rats.展开更多
The insulin-like growth factor(IGF) signaling path-way is an important pathway in the process of hepa-tocarcinogenesis,and the IGF network is clearly dysregulated in many cancers and developmental abnormalities.In hep...The insulin-like growth factor(IGF) signaling path-way is an important pathway in the process of hepa-tocarcinogenesis,and the IGF network is clearly dysregulated in many cancers and developmental abnormalities.In hepatocellular carcinoma(HCC),only a minority of patients are eligible for curative treatments,such as tumor resection or liver transplant.Unfortunately,there is a high recurrence of HCC after surgical tumor removal.Recent research efforts have focused on targeting IGF axis members in an attempt to find therapeutic options for many health problems.In this review,we shed lights on the regulation of members of the IGF axis,mainly by micro RNAs in HCC.Micro RNAs in HCC attempt to halt the aberrant expression of the IGF network,and a single micro RNA can have multiple downstream targets in one or more signaling pathways.Targeting micro RNAs is a relatively new approach for identifying an efficient radical cure for HCC.展开更多
AIM: To investigate the effect of microR NA on insulinlike growth factor binding protein-3(IGFBP-3) and hence on insulin-like growth factor-Ⅱ(IGF-Ⅱ) bioavailability in hepatocellular carcinoma(HCC).METHODS: Bioinfor...AIM: To investigate the effect of microR NA on insulinlike growth factor binding protein-3(IGFBP-3) and hence on insulin-like growth factor-Ⅱ(IGF-Ⅱ) bioavailability in hepatocellular carcinoma(HCC).METHODS: Bioinformatic analysis was performed using microrna.org, DIANA lab and Segal lab softwares. Total RNA was extracted from 23 HCC and 10 healthy liver tissues using mir Vana mi RNA Isolation Kit. microR NA-17-5p(miR-17-5p) expression was mimicked and antagonized in Hu H-7 cell lines using Hi Per Fect Transfection Reagent, then total RNA was extracted using Biozol reagent then reverse transcribed into cD NA followed by quantification of mi R-17-5p and IGFBP-3 expression using Taq Man real-time quantitative PCR. Luciferase reporter assay was performed to validate the binding of miR-17-5p to the 3'UTR of IGFBP-3. Free IGF-Ⅱ protein was measured in transfected Hu H-7 cells using IGF-Ⅱ ELISA kit. RESULTS: Bioinformatic analysis revealed IGFBP-3 as a potential target for miR-17-5p. Screening of miR-17-5p and IGFBP-3 revealed a moderate negative correlation in HCC patients, where mi R-17-5p was extensively underexpressed in HCC tissues(P = 0.0012), while IGFBP-3 showed significant upregulation in the same set of patients(P = 0.0041) compared to healthy donors. Forcing mi R-17-5p expression in Hu H-7 cell lines showed a significant downregulation of IGFBP-3 mR NA expression(P = 0.0267) and a significant increase in free IGF-Ⅱ protein(P = 0.0339) compared to mock untransfected cells using unpaired t-test. Luciferase assay validated IGFBP-3 as a direct target of mi R-17-5p; luciferase activity was inhibited by 27.5% in cells co-transfected with miR-17-5p mimics and the construct harboring the wild-type binding region 2 of IGFBP-3 compared to cells transfected with this construct alone(P = 0.0474).CONCLUSION: These data suggest that regulating IGF-Ⅱ bioavailability and hence HCC progression can be achieved through targeting IGFBP-3 via manipulating the expression of miR NAs.展开更多
BACKGROUND Type 2 diabetes(T2 D) is characterized by insufficient insulin secretion caused by defective pancreatic β-cell function or insulin resistance,resulting in an increase in blood glucose.However,the mechanism...BACKGROUND Type 2 diabetes(T2 D) is characterized by insufficient insulin secretion caused by defective pancreatic β-cell function or insulin resistance,resulting in an increase in blood glucose.However,the mechanism involved in this lack of insulin secretion is unclear.The level of vascular endothelial growth factor B(VEGF-B) is significantly increased in T2 D patients.The inactivation of VEGF-B could restore insulin sensitivity in db/db mice by reducing fatty acid accumulation.It is speculated that VEGF-B is related to pancreatic β-cell dysfunction and is an important factor affecting β-cell secretion of insulin.As an in vitro model of normal pancreatic β-cells,the MIN6 cell line can be used to analyze the mechanism of insulin secretion and related biological effects.AIM To study the role of VEGF-B in the insulin secretion signaling pathway in MIN6 cells and explore the effect of VEGF-B on blood glucose regulation.METHODS The MIN6 mouse pancreatic islet β-cell line was used as the model system.By administering exogenous VEGF-B protein or knocking down VEGF-B expression in MIN6 cells,we examined the effects of VEGF-B on insulin secretion,Ca2+ and cyclic adenosine monophosphate(cAMP) levels,and the insulin secretion signaling pathway.RESULTS Exogenous VEGF-B inhibited the secretion of insulin and simultaneously reduced the levels of Ca2+ and cAMP in MIN6 cells.Exogenous VEGF-B also reduced the expression of phospholipase C gamma 1(PLCγ1),phosphatidylinositol 3-kinase(PI3 K),serine/threonine kinase(AKT),and other proteins in the insulin secretion pathway.Upon knockdown of VEGF-B,MIN6 cells exhibited increased insulin secretion and Ca2+ and cAMP levels and upregulated expression of PLCγ1,PI3 K,AKT,and other proteins.CONCLUSION VEGF-B can regulate insulin secretion by modulating the levels of Ca2+ and cAMP.VEGF-B involvement in insulin secretion is related to the expression of PLCγ1,PI3 K,AKT,and other signaling proteins.These results provide theoretical support and an experimental basis for the study of VEGF-B in the pathogenesis of T2 D.展开更多
AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow...AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow of healthy donors was aspirated from the iliac crest.The adherent cells expanded rapidly and were maintained with periodic passages until a relatively homogeneous population was established.The identification of these cells was carried out by immunophenotype analysis and differentiation potential into osteocytes and adipocytes.To effectively induce hepatic differentiation,we designed a protocol based on a combination of IGF-Ⅰ and liver specificfactors(hepatocyte growth factor,oncostatin M and dexamethasone).Morphological features,hepatic functions and cytological staining were assessed to evaluate transdifferentiation of human marrow-derived MSCs.RESULTS:Flow cytometric analysis and the differentiation potential into osteoblasts and adipocytes showed that more than 90% of human MSCs which were isolated and expanded were positive by specif ic markers and functional tests.Morphological assessment and evaluation of glycogen storage,albumin and α-feto protein expression,as well as albumin and urea secretion revealed a statistically signif icant difference between the experimental groups and control.CONCLUSION:In vitro differentiated MSCs using IGF-Ⅰwere able to display advanced liver metabolic functions,supporting the possibility of developing them as potential alternatives to primary hepatocytes.展开更多
AIM: To investigate the dynamic features of insulin-like growth factor-I receptor (IGF-IR) expression in rat hepatocarcinogenesis, and the relationship between IGF-IR and hepatocytes malignant transformation at mRNA o...AIM: To investigate the dynamic features of insulin-like growth factor-I receptor (IGF-IR) expression in rat hepatocarcinogenesis, and the relationship between IGF-IR and hepatocytes malignant transformation at mRNA or protein level.METHODS: Hepatoma models were made by inducing with 2-fluorenylacetamide (2-FAA) on male Sprague-Dawley rats. Morphological changes of hepatocytes were observed by pathological Hematoxylin and eosin staining, the dynamic expressions of liver and serum IGF-IR were quantitatively analyzed by an enzyme-linked immunosorbent assay. The distribution of hepatic IGF-IR was located by immunohistochemistry. The fragments of IGF-IR gene were amplified by reverse transcription-polymerase chain reaction, and confirmed by sequencing.RESULTS: Rat hepatocytes after induced by 2-FAA were changed dynamically from granule-like degeneration, precancerous to hepatoma formation with the progressing increasing of hepatic mRNA or IGF-IR expression. The incidences of liver IGF-IR, IGF-IR mRNA, specific IGF-IR concentration (ng/mg wet liver), and serum IGF-IR level (ng/mL) were 0.0%, 0.0%, 0.63 ± 0.17, and 1.33 ± 0.47 in the control; 50.0%, 61.1%, 0.65 ± 0.2, and 1.51 ± 0.46 in the degeneration; 88.9%, 100%, 0.66 ± 0.14, and 1.92 ± 0.29 in the precancerosis; and 100%, 100%, 0.96 ± 0.09, and 2.43 ± 0.57 in the cancerous group, respectively. IGF-IR expression in the cancerous group was significantly higher (P < 0.01) than that in any of other groups at mRNA or protein level. The closely positive IGF-IR relationship was found between livers and sera (r = 0.91, t = 14.222, P < 0.01), respectively.CONCLUSION: IGF-IR expression may participate in rat hepatocarcinogenesis and its abnormality should be an early marker for hepatocytes malignant transformation.展开更多
文摘AIM To clarify the relationship between the Insulin like growth factor Ⅱ (IGF Ⅱ), IGF Ⅱ receptor and chronic liver diseases and to provide evidences for basic and clinical researches for exploring the potential mechanisms of human hepatocellular carcinoma (HCC). METHODS The poly (A)+ mRNA translation of IGF Ⅱ and IGF Ⅱ receptor in dysplasia liver cell (DLC n =10), liver cirrhosis (LC n =9) and chronic active hepatitis (CAH n =9) were analyzed with RNA gel electrophoresis, Northern blot and hybridization using human IGF Ⅱ and IGF Ⅱ receptor DNA probes labelled with 32 P through Nick translation and autoradiography. RESULTS The overexpression of IGF Ⅱ in DLC (10/10, 100%) was apparently higher than that in CAH (3/9, 33%) and LC (3/9, 33%), ( P <0 01). The overexpression of IGF Ⅱ receptor in DLC (7/10, 70%) was significantly higher than that in CAH (2/9, 22%) and LC (3/9, 33%), respectively. The data of HBV infection from different chronic liver diseases were analyzed. CONCLUSION The overexpression of IGF Ⅱ and IGF Ⅱ receptor in DLC was related to the preceeding of malignant phenotype of hepatocyte, which provided a diagnostic value for early detection of hepatocellular carcinoma (HCC). Persistent HBV infection is strongly associated with abnormal activation of IGF Ⅱ and IGF Ⅱ receptor, which might indicate a stimulating mechanism of autocrine or paracrine growth involved in live cell carcinogenesis.
基金Supported by Ministerio de Ciencia e Innovacion BIO2009/09295 and SAF2012-40003FEDER funding,funds from the"UTE project CIMA"+1 种基金the project RNAREG(CSD2009-00080)from The Ministry of Science and Innovation under the programme CONSOLIDER INGENIO 2010
文摘Hepatocellular carcinoma(HCC) is the third leading cause of cancer-related deaths worldwide. Only 30%-40% of the patients with HCC are eligible for curative treatments, which include surgical resection as the first option, liver transplantation and percutaneous ablation. Unfortunately, there is a high frequency of tumor recurrence after surgical resection and most HCC seem resistant to conventional chemotherapy and radiotherapy. Sorafenib, a multi-tyrosine kinase inhibitor, is the only chemotherapeutic option for patients with advanced hepatocellular carcinoma. Patients treated with Sorafenib have a significant increase in overall survival of about three months. Therefore, there is an urgent need to develop alternative treatments. Due to its role in cell growth and development, the insulin-like growth factor system is commonly deregulated in many cancers. Indeed, the insulin-like growth factor(IGF) axis has recently emerged as a potential target for hepatocellular carcinoma treatment. To this aim, several inhibitors of the pathway have been developed suchas monoclonal antibodies, small molecules, antisense oligonucleotides or small interfering RNAs. However recent studies suggest that, unlike most tumors, HCC development requires increased signaling through insulin growth factor Ⅱ rather than insulin growth factor Ⅰ. This may have great implications in the future treatment of HCC. This review summarizes the role of the IGF axis in liver carcinogenesis and the current status of the strategies designed to target the IGF-Ⅰ signaling pathway for hepatocellular carcinoma treatment.
基金supported by the National Natural Science Foundation of China (No. 30700869)
文摘The influence of early-stage intensive insulin therapy on the plasma levels of vascular en- dothelial growth factor (VEGF) and the related parameters in patients with severe trauma and the clini- cal implication were investigated. Sixty-four cases of severe trauma (injury severity score 〉20) with stress hyperglycemia (blood glucose 〉9 mmol/L) were randomly divided into intensive insulin therapy group and conventional therapy group. ELISA method, radioimmunoassay and density gradient grada- tion one-step process were used to determine plasma VEGF, endothelin-1 (ET-1), and the number of circulating endothelial cells (CECs) at the day of 0, 2, 3, 5 and 7 after admission. Simultaneously, the changes of CRP concentration in plasma were monitored to evaluate inflammatory response. The results showed that plasma levels of observational indexes in patients receiving early-stage intensive insulin therapy were all significantly lower than those in conventional therapy groups 2, 3, 5 and 7 days after admission [for VEGF (ng/L), 122.2±23.8 vs. 135.9±26.5, 109.6±27.3 vs. 129.0±18.4, 88.7±18.2 vs. 102.6±27.3, 54.2±26.4 vs. 85.7±35.2, P〈0.05, 0.01, 0.05, 0.05 respectively; for ET-1 (ng/L), 162.8±23.5 vs. 173.7±13.2, 128.6±17.5 vs. 148.8±22.4, 96.5±14.8 vs. 125.7±14.8, 90.7±16.9 vs. 104.9±22.5, P〈0.05, 0.01, 0.01, 0.01 respectively; for CRP (mg/L), 23.2±13.8 vs. 31.9±16.5, 13.6±17.3 vs. 23.5±18.4, 8.7±10.2 vs. 15.6±13.3, 5.2±9.4 vs. 10.7±11.2, all P〈0.05; for CECs (/0.9 μL), 10.9±5.6 vs. 13.9±6.2, 8.5±4.9 vs. 11.3±5.3, 6.3±6.4 vs. 9.4±5.7, 4.8±7.1 vs. 7.8±4.8, all P〈0.05]. It was concluded that intensive insulin therapy could antagonize the endothelium injury after trauma and reduce inflammation response quickly, which was one of important mechanisms by which intensive insulin therapy improves the prognosis of trauma patients.
基金Supported by An operating grant from Canadian Institutes of Health Research,No.89887 to Jin TRa NSFC grant,No.81072300 to Jin TR and Yu ZWa NSFC grant,No.30730079 to Ling WH in part
文摘Redox balance is fundamentally important for physiological homeostasis. Pathological factors that disturb this dedicated balance may result in oxidative stress, leading to the development or aggravation of a variety of diseases, including diabetes mellitus, cardiovascular diseases, metabolic syndrome as well as inflammation, aging and cancer. Thus, the capacity of endogenous free radical clearance can be of patho-physiological importance; in this regard, the major reactive oxygen species defense machinery, the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) system needs to be precisely modulated in response to pathological alterations. While oxidative stress is among the early events that lead to the development of insulin resistance, the activation of Nrf2 scavenging capacity leads to insulin sensitization. Furthermore, Nrf2 is evidently involved in regulating lipid metabolism. Here we summarize recent findings that link the Nrf2 system to metabolic homeostasis and insulin action and present our view that Nrf2 may serve as a novel drug target for diabetes and its complications.
基金Supported by the Major State Basic Research Development Program of China (973 Program), No. G2000057010
文摘The insulin/insulin-like growth factor 1 (IGF-1) signaling pathway is evolutionary conserved in diverse speciesincluding C.elegans, saccharomyces cerevisiae, Drosophila melanogaster, rodents and humans, which is involved in many interrelated functions that are necessary for metabolism, growth and reproduction. Interestingly, more and more research has revealed that insulin/IGF-1 signaling pathway plays a pivotal role in the regulation of longevity. Generally, disruption of the power of this pathway will extend longevity in species ranging from C.elegansto humans. The role of insulin/IGF-1 in longevit yis probably related to stress resistance. Although the underlying mechanisms of longevity are not fully understood, the Insulin/IGF-1 signaling pathway has attracted substantial attention and it will be a novel target to prevent or postpone age-related diseases and extend life span. In this review, we mainly focus on the similar constitution and role of insulin/IGF-1 signaling pathway in C.elegans, saccharomyces cerevisiae, rodents and humans.
基金funded by grants PICT 2017 N°0509 from Argentine Ministry of Science and Technology and PIP 2017-2019 N°00301 from The National Research Council of Argentina granted to FLthe grant from The National Research Council of Argentina PIP 2014-2017(extended to 2020)0618 awarded to MJB。
文摘Although little attention has been paid to cognitive and emotional dysfunctions observed in patients after spinal co rd injury,several reports have described impairments in cognitive abilities.Our group also has contributed significantly to the study of cognitive impairments in a rat model of spinal co rd injury.These findings are very significant because they demonstrate that cognitive and mood deficits are not induced by lifestyle changes,drugs of abuse,and combined medication.They are related to changes in brain structures involved in cognition and emotion,such as the hippocampus.Chronic spinal cord injury decreases neurogenesis,enhances glial reactivity leading to hippocampal neuroinflammation,and trigge rs cognitive deficits.These brain distal abnormalities are recently called te rtiary damage.Given that there is no treatment for Tertiary Damage,insulin growth factor 1 gene therapy emerges as a good candidate.Insulin growth factor 1 gene thera py recove rs neurogenesis and induces the polarization from pro-inflammato ry towards anti-inflammatory microglial phenotypes,which represents a potential strategy to treat the neuroinflammation that supports te rtiary damage.Insulin growth factor 1 gene therapy can be extended to other central nervous system pathologies such as traumatic brain injury where the neuroinflammatory component is crucial.Insulin growth factor 1 gene therapy could emerge as a new therapeutic strategy for treating traumatic brain injury and spinal cord injury.
文摘Diabetes is the most prevalent and serious metabolic disease, and the number of diabetic patients worldwide is increasing. The reduction of insulin biosynthes is in pancreatic E-cells is closely associated with the onset and progression of diabetes, therefore, it is important to search for ways to induce insulin-producing cells in non-E-cells. In the present study, it has been reported that activin A and a basic fibroblast growth factor 2 ( FGF2), can synergistically increase the insulin mRNA level, in both mouse El4 striatal primary cell cultures and the hippocampal neuronal cell line HT22. Activin A and FGF2 can jointly stimulate the nuclear translocation of Smad3 and specifically activate ERK1/2. It is interesting to note that a specific inhibitor for MEK, U0126, can efficiently block the induction of an insulin promoter activity by activin A and FGF2. This indicates that activin A collaborates with FGF2, giving a signal to induce the insulin gene through selective activation of the ERK-type MAP kinase and Smad3 in mouse striatal and HT22 cells. These data suggest that activin A may act in concert with FGF2 for the development of insulin -positive neurons
文摘OBJECTIVE: To study the value of serum insulin-like growth factor binding protein-3 (IGFBP-3) levels in differential diagnosis of growth hormone deficiency (GHD). METHODS: To measure serum IGFBP-3 levels by RIA in normal children and adolescents, GHD children and short-stature children without GHD. RESULTS: Serum level of IGFBP-3 in 129 children with untreated GHD and with no pubertal development was 1.6 +/- 0.9 mg/L, which was less than that in normal group of the same age, but overlapped with the normal children in Tanner stage I. After six-month treatment with recombinant human growth hormone (rhGH), serum level of IGFBP-3 in 59 GHD significantly increased from 1.3 +/- 0.7 mg/L to 2.7 +/- 0.9 mg/L, accompanied by an increase of body heights, growth velocities and serum level of IGF-1. Serum level of IGFBP-3 in 55 short-stature children without GHD was 3.3 +/- 2.2 mg/L, which was not significantly different from that in normal group. CONCLUSION: Serum IGFBP-3 level can reflect the status of GH secretion in children with GHD and is a useful marker for differential diagnosis of GHD.
文摘Brain integrity and cognitive aptitude are often impaired in patients with diabetes mellitus, presumably a result of the metabolic complications inherent to the disease. However, an increasing body of evidence has demonstrated the central role of insulin-like growth factor 1(IGF1) and its relation to sex hormones in many neuroprotective processes. Both male and female patients with diabetes display abnormal IGF1 and sexhormone levels but the comparison of these fluctuations is seldom a topic of interest. It is interesting to note that both IGF1 and sex hormones have the ability to regulate phosphoinositide 3-kinase-Akt and mitogen-activated protein kinases-extracellular signal-related kinasesignaling cascades in animal and cell culture models of neuroprotection. Additionally, there is considerable evidence demonstrating the neuroprotective coupling of IGF1 and estrogen. Androgens have also been implicated in many neuroprotective processes that operate on similar signaling cascades as the estrogen-IGF1 relation. Yet, androgens have not been directly linked to the brain IGF1 system and neuroprotection. Despite the sex-specific variations in brain integrity and hormone levels observed in diabetic patients, the IGF1-sex hormone relation in neuroprotection has yet to be fully substantiated in experimental models of diabetes. Taken together, there is a clear need for the comprehensive analysis of sex differences on brain integrity of diabetic patients and the relationship between IGF1 and sex hormones that may influence brain-health outcomes. As such, this review will briefly outline the basic relation of diabetes and IGF1 and its role in neuroprotection. We will also consider the findings on sex hormones and diabetes as a basis for separately analyzing males and females to identify possible hormone-induced brain abnormalities. Finally, we will introduce the neuroprotective interplay of IGF1 and estrogen and how androgen-derived neuroprotection operates through similar signaling cascades. Future research on both neuroprotection and diabetes should include androgens into the interplay of IGF1 and sex hormones.
基金Supported by Technological Research Project for Public Welfare from Science and Technology Department of Zhejiang Province,No.2010C33099
文摘AIM:To investigate the expression of insulin-like growth factor-1(IGF-1)/insulin-like growth factor-1 receptor(IGF-1R)in colorectal cancer(CRC)tissues and to analyze their correlation with lymphangiogenesis and lymphatic metastasis.METHODS:Immunohistochemistry was used to evaluate IGF-1 and IGF-1R expression and lymphatic vessel density(LVD)in 40 CRC specimens.The correlation between IGF-1/IGF-1R and LVD was investigated.Effects of IGF-1 on migration and invasion of CRC cells were examined using transwell chamber assays.A LoVo cell xenograft model was established to further detect the role of IGF-1 in CRC lymphangiogenesis in vivo. RESULTS:Elevated IGF-1 and IGF-1R expression in CRC tissues was correlated with lymph node metastasis(r=0.715 and 0.569,respectively,P<0.05)and tumor TNM stage(r=0.731 and 0.609,P<0.05).A higher LVD was also found in CRC tissues and was correlated with lymphatic metastasis(r=0.405,P<0.05).A positive correlation was found between LVD and IGF-1R expression(r=0.437,P<0.05).Transwell assays revealed that IGF-1 increased the migration and invasion of CRC cells.In vivo mouse studies showed that IGF-1 also increased LVD in LoVo cell xenografts.CONCLUSION:IGF-1/IGF-1R signaling induces tumorassociated lymphangiogenesis and contributes to lymphatic metastasis of CRC.
基金This projectwas supported by a grant from National Nat-ural Sciences Founction of China (No.38970 75 8)
文摘Whether cultured bovine trabecular meshwork cells and trabecular tissue ex vivo express insulin like growth factor I (IGF Ⅰ) messenger RNA (mRNA) and protein was investigated. Total RNA of cultured bovine trabecular meshwork cells as well as trabecular meshwork tissue freshly excised from bovine eyes was extracted, and reverse transcriptase polymerase chain reaction (RT PCR) was used to detect IGF Ⅰ mRNA. RT PCR product was verified by sequencing. Immunohistochemical stain was used to detect IGF Ⅰ protein. The results showed that a single PCR amplified product was obtained, and the sequence was homologous to the known sequence.. IGF Ⅰ immunostain was positive in the cytoplasm of trabecular meshwork cells. It was concluded that trabecular meshwork cells produce IGF Ⅰ and contribute to the presence of IGF Ⅰ in trabecular meshwork microenvironment as well as aqueous humor. Trabecular meshwork cells were affected by IGF Ⅰ not only through paracrine, but also autocrine action. Whether abnormal down regulations in IGF Ⅰ production may contribute to the pathogenesis of primary open angle glaucoma and the possibility of promoting the autocrine action of IGF Ⅰ by trabecular meshwork cells to treat the diesease is worth further investigation.
文摘BACKGROUND Type 2 diabetes mellitus(T2DM)is a chronic metabolic disease featured by insulin resistance(IR)and decreased insulin secretion.Currently,vitamin D deficiency is found in most patients with T2DM,but the relationship between vitamin D and IR in T2DM patients requires further investigation.AIM To explore the risk factors of IR and the effects of vitamin D supplementation on glucose and lipid metabolism in patients with T2DM.METHODS Clinical data of 162 T2DM patients treated in First Affiliated Hospital of Harbin Medical University between January 2019 and February 2022 were retrospectively analyzed.Based on the diagnostic criteria of IR,the patients were divided into a resistance group(n=100)and a non-resistance group(n=62).Subsequently,patients in the resistance group were subdivided to a conventional group(n=44)or a joint group(n=56)according to the treatment regimens.Logistic regression was carried out to analyze the risk factors of IR in T2DM patients.The changes in glucose and lipid metabolism indexes in T2DM patients with vitamin D deficiency were evaluated after the treatment.RESULTS Notable differences were observed in age and body mass index(BMI)between the resistance group and the non-resistance group(both P<0.05).The resistance group exhibited a lower 25-hydroxyvitamin D_(3)(25(OH)D_(3))level,as well as notably higher levels of 2-h postprandial blood glucose(2hPG),fasting blood glucose(FBG),and glycosylated hemoglobin(HbA1c)than the non-resistance group(all P<0.0001).Additionally,the resistance group demonstrated a higher triglyceride(TG)level but a lower high-density lipoprotein-cholesterol(HDL-C)level than the non-resistance group(all P<0.0001).The BMI,TG,HDL-C,25(OH)D_(3),2hPG,and HbA1c were found to be risk factors of IR.Moreover,the posttreatment changes in levels of 25(OH)D_(3),2hPG,FBG and HbA1c,as well as TG,total cholesterol,and HDL-C in the joint group were more significant than those in the conventional group(all P<0.05).CONCLUSION Patients with IR exhibit significant abnormalities in glucose and lipid metabolism parameters compared to the noninsulin resistant group.Logistic regression analysis revealed that 25(OH)D_(3)is an independent risk factor influencing IR.Supplementation of vitamin D has been shown to improve glucose and lipid metabolism in patients with IR and T2DM.
基金Supported by The National Natural Science Foundation of China, No. 30971354The International Cooperation Project of Jiangsu Province Department of Health, No. SBZ201100103The Graduate Innovation Foundation of Jiangsu Province, China,No. CXZZ11_0704
文摘AIM: To investigate whether the reduction of stem cell factor (SCF) is mediated by decreased endogenous insulin-like growth factor (IGF)-1 in diabetic rat colon smooth muscle. METHODS: Sixteen Sprague-Dawley rats were randomly divided into two groups: control group and streptozotocin-induced diabetic group. After 8 wk of streptozotocin administration, colonic motility function and contractility of circular muscle strips were measured. The expression of endogenous IGF-1 and SCF was tested in colonic tissues. Colonic smooth muscle cells were cultured from normal adult rats. IGF-1 siRNA transfection was used to investigate whether SCF expression was affected by endogenous IGF-1 expression in smooth muscle cells, and IGF-1 induced SCF expression effects were studied. The effect of high glucose on the expression of endogenous IGF-1 and SCF was also investigated. RESULTS: Diabetic rats showed prolonged colonic transit time (252 ± 16 min vs 168 ± 9 min, P < 0.01) and weakness of circular muscle contraction (0.81 ± 0.09 g vs 2.48 ± 0.23 g, P < 0.01) compared with the control group. Endogenous IGF-1 and SCF protein expression was significantly reduced in the diabetic colonic muscle tissues. IGF-1 and SCF mRNA expression also showed a paralleled reduction in diabetic rats. In the IGF-1 siRNA transfected smooth muscle cells, SCF mRNA and protein expression was significantly decreased. IGF-1 could induce SCF expression in a concentration and time-dependent manner, mainly through the extracellular-signal-regulated kinase 1/2 signal pathway. High glucose inhibited endogenous IGF-1 and SCF expression and the addition of IGF-1 to the medium reversed the SCF expression. CONCLUSION: Myopathy may resolve in colonic motility dysfunction in diabetic rats. Deficiency of endogenous IGF-1 in colonic smooth muscle cells leads to reduction of SCF expression.
文摘Aim: To determine whether adenoviral gene transfer of insulin like growth factor-1 (IGF-1) to the penis of streptozotocin (STZ)-induced diabetic rats could improve erectile capacity. Methods: The STZ diabetic rats were transfected with AdCMV-βgal or AdCMV-IGF-1. These rats underwent cavernous nerve stimulation to assess erectile function and their responses were compared with those of age-matched control rats 1 to 2 days after transfection. In control and transfected STZ diabetic rats, IGF-1 expression were examined by reverse transcription polymerase chain reaction (RT-PCR), Western blot and histology. The penis β-galactosidase activity and localization of the STZ diabetic rats were also determined. Results: One to two days after transfection, the β-galactosidase was found in the smooth muscle cells of the diabetic rat penis transfected with AdCMV-βgal. One to 2 days after administration of AdCMV- IGF-1, the cavernosal pressure, as determined by the ratio of maximal intracavernous pressure-to-mean arterial pressure (ICP/MAP) and total intracavernous pressure (ICP), was increased in response to cavernous nerve stimulation. Transgene expression was confirmed by RT-PCR, Western blot and histology. Conclusion: Gene transfer of IGF-1 significantly increased erectile function in the STZ diabetic rats. These results suggest that in vivo gene transfer of IGF- 1 might be a new therapeutic intervention for the treatment of erectile dysfunction (ED) in the STZ diabetic rats.
文摘The insulin-like growth factor(IGF) signaling path-way is an important pathway in the process of hepa-tocarcinogenesis,and the IGF network is clearly dysregulated in many cancers and developmental abnormalities.In hepatocellular carcinoma(HCC),only a minority of patients are eligible for curative treatments,such as tumor resection or liver transplant.Unfortunately,there is a high recurrence of HCC after surgical tumor removal.Recent research efforts have focused on targeting IGF axis members in an attempt to find therapeutic options for many health problems.In this review,we shed lights on the regulation of members of the IGF axis,mainly by micro RNAs in HCC.Micro RNAs in HCC attempt to halt the aberrant expression of the IGF network,and a single micro RNA can have multiple downstream targets in one or more signaling pathways.Targeting micro RNAs is a relatively new approach for identifying an efficient radical cure for HCC.
文摘AIM: To investigate the effect of microR NA on insulinlike growth factor binding protein-3(IGFBP-3) and hence on insulin-like growth factor-Ⅱ(IGF-Ⅱ) bioavailability in hepatocellular carcinoma(HCC).METHODS: Bioinformatic analysis was performed using microrna.org, DIANA lab and Segal lab softwares. Total RNA was extracted from 23 HCC and 10 healthy liver tissues using mir Vana mi RNA Isolation Kit. microR NA-17-5p(miR-17-5p) expression was mimicked and antagonized in Hu H-7 cell lines using Hi Per Fect Transfection Reagent, then total RNA was extracted using Biozol reagent then reverse transcribed into cD NA followed by quantification of mi R-17-5p and IGFBP-3 expression using Taq Man real-time quantitative PCR. Luciferase reporter assay was performed to validate the binding of miR-17-5p to the 3'UTR of IGFBP-3. Free IGF-Ⅱ protein was measured in transfected Hu H-7 cells using IGF-Ⅱ ELISA kit. RESULTS: Bioinformatic analysis revealed IGFBP-3 as a potential target for miR-17-5p. Screening of miR-17-5p and IGFBP-3 revealed a moderate negative correlation in HCC patients, where mi R-17-5p was extensively underexpressed in HCC tissues(P = 0.0012), while IGFBP-3 showed significant upregulation in the same set of patients(P = 0.0041) compared to healthy donors. Forcing mi R-17-5p expression in Hu H-7 cell lines showed a significant downregulation of IGFBP-3 mR NA expression(P = 0.0267) and a significant increase in free IGF-Ⅱ protein(P = 0.0339) compared to mock untransfected cells using unpaired t-test. Luciferase assay validated IGFBP-3 as a direct target of mi R-17-5p; luciferase activity was inhibited by 27.5% in cells co-transfected with miR-17-5p mimics and the construct harboring the wild-type binding region 2 of IGFBP-3 compared to cells transfected with this construct alone(P = 0.0474).CONCLUSION: These data suggest that regulating IGF-Ⅱ bioavailability and hence HCC progression can be achieved through targeting IGFBP-3 via manipulating the expression of miR NAs.
基金Supported by National Natural Science Foundation of China,No.31771284National Natural Science Foundation of China Youth Project,No.31702024+1 种基金Major Basic Research Project of Shandong Provincial Natural Science Foundation,No.ZR2019ZD27Shandong Province Higher Educational Science and Technology Plan Project,No.J17KA258。
文摘BACKGROUND Type 2 diabetes(T2 D) is characterized by insufficient insulin secretion caused by defective pancreatic β-cell function or insulin resistance,resulting in an increase in blood glucose.However,the mechanism involved in this lack of insulin secretion is unclear.The level of vascular endothelial growth factor B(VEGF-B) is significantly increased in T2 D patients.The inactivation of VEGF-B could restore insulin sensitivity in db/db mice by reducing fatty acid accumulation.It is speculated that VEGF-B is related to pancreatic β-cell dysfunction and is an important factor affecting β-cell secretion of insulin.As an in vitro model of normal pancreatic β-cells,the MIN6 cell line can be used to analyze the mechanism of insulin secretion and related biological effects.AIM To study the role of VEGF-B in the insulin secretion signaling pathway in MIN6 cells and explore the effect of VEGF-B on blood glucose regulation.METHODS The MIN6 mouse pancreatic islet β-cell line was used as the model system.By administering exogenous VEGF-B protein or knocking down VEGF-B expression in MIN6 cells,we examined the effects of VEGF-B on insulin secretion,Ca2+ and cyclic adenosine monophosphate(cAMP) levels,and the insulin secretion signaling pathway.RESULTS Exogenous VEGF-B inhibited the secretion of insulin and simultaneously reduced the levels of Ca2+ and cAMP in MIN6 cells.Exogenous VEGF-B also reduced the expression of phospholipase C gamma 1(PLCγ1),phosphatidylinositol 3-kinase(PI3 K),serine/threonine kinase(AKT),and other proteins in the insulin secretion pathway.Upon knockdown of VEGF-B,MIN6 cells exhibited increased insulin secretion and Ca2+ and cAMP levels and upregulated expression of PLCγ1,PI3 K,AKT,and other proteins.CONCLUSION VEGF-B can regulate insulin secretion by modulating the levels of Ca2+ and cAMP.VEGF-B involvement in insulin secretion is related to the expression of PLCγ1,PI3 K,AKT,and other signaling proteins.These results provide theoretical support and an experimental basis for the study of VEGF-B in the pathogenesis of T2 D.
基金Supported by A grant from Stem Cell Organization:www.stem cell.ir
文摘AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow of healthy donors was aspirated from the iliac crest.The adherent cells expanded rapidly and were maintained with periodic passages until a relatively homogeneous population was established.The identification of these cells was carried out by immunophenotype analysis and differentiation potential into osteocytes and adipocytes.To effectively induce hepatic differentiation,we designed a protocol based on a combination of IGF-Ⅰ and liver specificfactors(hepatocyte growth factor,oncostatin M and dexamethasone).Morphological features,hepatic functions and cytological staining were assessed to evaluate transdifferentiation of human marrow-derived MSCs.RESULTS:Flow cytometric analysis and the differentiation potential into osteoblasts and adipocytes showed that more than 90% of human MSCs which were isolated and expanded were positive by specif ic markers and functional tests.Morphological assessment and evaluation of glycogen storage,albumin and α-feto protein expression,as well as albumin and urea secretion revealed a statistically signif icant difference between the experimental groups and control.CONCLUSION:In vitro differentiated MSCs using IGF-Ⅰwere able to display advanced liver metabolic functions,supporting the possibility of developing them as potential alternatives to primary hepatocytes.
基金Supported by The Society Development of Nantong,HS2012039Jiangsu Health Projects,BL2012053,K201102the Priority Academic Program Development of Jiangsu,and the International S and T Cooperation Program,2013DFA32150 of China
文摘AIM: To investigate the dynamic features of insulin-like growth factor-I receptor (IGF-IR) expression in rat hepatocarcinogenesis, and the relationship between IGF-IR and hepatocytes malignant transformation at mRNA or protein level.METHODS: Hepatoma models were made by inducing with 2-fluorenylacetamide (2-FAA) on male Sprague-Dawley rats. Morphological changes of hepatocytes were observed by pathological Hematoxylin and eosin staining, the dynamic expressions of liver and serum IGF-IR were quantitatively analyzed by an enzyme-linked immunosorbent assay. The distribution of hepatic IGF-IR was located by immunohistochemistry. The fragments of IGF-IR gene were amplified by reverse transcription-polymerase chain reaction, and confirmed by sequencing.RESULTS: Rat hepatocytes after induced by 2-FAA were changed dynamically from granule-like degeneration, precancerous to hepatoma formation with the progressing increasing of hepatic mRNA or IGF-IR expression. The incidences of liver IGF-IR, IGF-IR mRNA, specific IGF-IR concentration (ng/mg wet liver), and serum IGF-IR level (ng/mL) were 0.0%, 0.0%, 0.63 ± 0.17, and 1.33 ± 0.47 in the control; 50.0%, 61.1%, 0.65 ± 0.2, and 1.51 ± 0.46 in the degeneration; 88.9%, 100%, 0.66 ± 0.14, and 1.92 ± 0.29 in the precancerosis; and 100%, 100%, 0.96 ± 0.09, and 2.43 ± 0.57 in the cancerous group, respectively. IGF-IR expression in the cancerous group was significantly higher (P < 0.01) than that in any of other groups at mRNA or protein level. The closely positive IGF-IR relationship was found between livers and sera (r = 0.91, t = 14.222, P < 0.01), respectively.CONCLUSION: IGF-IR expression may participate in rat hepatocarcinogenesis and its abnormality should be an early marker for hepatocytes malignant transformation.