Skin-derived precursor Schwann cells have been reported to play a protective role in the central nervous system. The neuroprotective effects of skin-derived precursor Schwann cells may be attributable to the release o...Skin-derived precursor Schwann cells have been reported to play a protective role in the central nervous system. The neuroprotective effects of skin-derived precursor Schwann cells may be attributable to the release of growth factors that nourish host cells. In this study, we first established a cellular model of Parkinson’s disease using 6-hydroxydopamine. When SH-SY5 Y cells were pretreated with conditioned medium from skin-derived precursor Schwann cells, their activity was greatly increased. The addition of insulin-like growth factor-2 neutralizing antibody markedly attenuated the neuroprotective effects of skin-derived precursor Schwann cells. We also found that insulin-like growth factor-2 levels in the peripheral blood were greatly increased in patients with Parkinson’s disease and in a mouse model of Parkinson’s disease. Next, we pretreated cell models of Parkinson’s disease with insulin-like growth factor-2 and administered insulin-like growth factor-2 intranasally to a mouse model of Parkinson’s disease induced by 6-hydroxydopamine and found that the level of tyrosine hydroxylase, a marker of dopamine neurons, was markedly restored, α-synuclein aggregation decreased, and insulin-like growth factor-2 receptor downregulation was alleviated. Finally, in vitro experiments showed that insulin-like growth factor-2 activated the phosphatidylinositol 3 kinase(PI3 K)/AKT pathway. These findings suggest that the neuroprotective effects of skin-derived precursor Schwann cells on the central nervous system were achieved through insulinlike growth factor-2, and that insulin-like growth factor-2 may play a neuroprotective role through the insulin-like growth factor-2 receptor/PI3 K/AKT pathway. Therefore, insulin-like growth factor-2 may be an useful target for Parkinson’s disease treatment.展开更多
Accumulating evidence suggests that a disruption of early brain development,in which insulin-like growth factor-2(IGF-2)has a crucial role,may underlie the pathophysiology of schizophrenia.Our previous study has shown...Accumulating evidence suggests that a disruption of early brain development,in which insulin-like growth factor-2(IGF-2)has a crucial role,may underlie the pathophysiology of schizophrenia.Our previous study has shown that decreased serum IGF-2 was correlated with the severity of psychopathology in patients with schizophrenia.Here we conducted a prospective observation trial to investigate the effects of atypical antipsychotics on serum IGF-2 level and its relationship with clinical improvements in schizophrenia patients.Thirty-one schizophrenia patients with acute exacerbation and 30 healthy individuals were recruited in this study.Psychiatric symptoms were assessed using the Positive and Negative Syndrome Scale(PANSS)and serum IGF-2 levels were determined using ELISA.We found that schizophrenia patients with acute exacerbation had lower serum IGF-2 levels than control individuals at baseline(P<0.05).After 2 months of atypical antipsychotic treatment,a significant improvement in each PANSS subscore and total score was observed in patients(all P<0.01),and the serum IGF-2 levels of patients were significantly increased compared with those at baseline(203.13±64.62 vs.426.99±124.26 ng/mL;t=−5.044,P<0.001).Correlation analysis revealed that the changes of serum IGF-2 levels in patients were significantly correlated with the improvements of negative symptoms(r=−0.522,P=0.006).Collectively,our findings demonstrated changes of serum IGF-2 response to improvements of negative symptoms in schizophrenia patients treated with atypical antipsychotics,suggesting that serum IGF-2 might be a treatment biomarker for schizophrenia.展开更多
Background The present study aimed to investigate the detailed mode and specific sites for their binding as well as the functional relevance of this binding in the phenotypic proliferation of vascular smooth muscle ce...Background The present study aimed to investigate the detailed mode and specific sites for their binding as well as the functional relevance of this binding in the phenotypic proliferation of vascular smooth muscle cells(SMCs). Methods CREG knocked-down SMCs were employed to evaluate the biological activity of wtCREG and mCREG.Expressions of SMC differentiation markers SM myosin heavy chain(SM-MHC),SM-actin,heavy caldesmon and myocardin were determined by Western blotting using specific antibodies. Cellular growth of SMCs was assessed by bromide dewuridine (BrdU) incorporation and cell cycle analysis on fluorescence-activated cell sorting(FACS).A solid-phase binding assay was used to study the binding of CREG to extracellular domains of M6P/IGF2R.The cellular co-localization of the two recombinant CREGs with M6P/IGF2R was detected on SMC surface by immunoprecipitation and immunofluorescence analysis.Results The molecular weight of wtCREG was around 30 kD while that of the mCREG was~25 kD.Treatment of wtCREG with PNGase F reduced its molecular weight from~30 kD to~25 kD,whereas PNGase F treatment had no effect on the molecular weight of mCREG.Both wtCREG and mCREG proteins enhanced SMC differentiation,inhibited BrdU incorporation,and arrested cell cycle progression when added to the culture medium.In CREG knocked-down SMCs,the amount of CREG detected by immunoblotting in M6P/IGF2R immunoprecipitates was significantly reduced when compared to normal cells.Both recombinant CREGs co-immunoprecipitated with M6P/IGF2R, although slightly reduced amount of the mutant CREG was detected in M6P/IGF2R immunoprecipitates.Immunostaining revealed that His-tagged CREGs co-localized with IGF2R on the cell surface in a glycosylation-independent manner.In vitro binding assay showed that CREGs bound to M6P/ IGF2R extracellular domains 7-10 and 11-13 in a glycosylation -dependent and -independent manner,respectively.Further blocking experiments using soluble M6P/IGF2R fragments and M6P/IGF2R neutralizing antibody indicated that the biological activities of recombinant CREGs in SMC growth and the up-regulation of SMC differentiation markers were all abolished by treatment with the M6P/IGF2R neutralizing antibody. However,although the growth inhibitory effect of wtCREG was nearly abolished by D7-10 or D11-13,the effect of mCREG was only reversed by Dll-13,indicating that the binding to domains 11-13 is required for CREG to modulate the proliferation of SMCs.Conclusions These data suggest that solubleCREG proteins can exert their biological function via binding to the extracellular domains 7-10 and 11-13 of cell surface M6P/IGF2R in both a glycosylation-dependent and -independent manner.展开更多
BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate si...BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate signal transduction systems of Ras/MAPK and PI3K/Akl, which promote glioma growth. OBJECTIVE: To utilize RNA interference (RNAi) technique to down-regulate FGF-2, IGF-1, and IGF-1R gene expression, and to investigate the effects of these genes on rat C6 glioma cells, as well as the feasibility of RNAi for treating glioma. DESIGN, TIME AND SETTING: This neurooncological, randomized, controlled, in vivo and in vitro experiment, which used RNAi methodology, was performed at the Laboratory of Molecular Biology, Institute of Biochemistry, Chinese Academy of Sciences between August 2005 and February 2008. MATERIALS: Rat C6 cell lines were purchased from Shanghai Institute of Cellular Biology Affiliated to Chinese Academy of Sciences. Small interfering RNA (siRNA) was synthesized by Shanghai GenePharma. Anti-IGF-1, anti-IGF-1R, anti-FGF-2, anti-mouse and anti-rabbit IgG G1-HRP antibodies were provided by Santa Cruz Biotechnology, USA. Four to six week-old BALB/c nude mice were purchased from the Laboratory Animal Center, Chinese Academy of Sciences. METHODS: C6 glioma cells were transfected with siRNA, which was chemically synthesized in vitro to correspond to endogenous FGF-2, IGF-1, and IGF-1R genes. The inhibition ratio of targeting mRNA expression was detected by semiquantitative RT-PCR, and protein expression was determined by Western blot analysis. C6 glioma cell proliferation was observed using a growth curve C6 glioma cell apoptosis rate and cell cycle were detected by flow cytometry. C6 glioma cell growth regression was observed by transwell migration assay. In addition, nude mouse subcutaneous tumor models were used in this study. For studying the anti-tumor effects of IGF-1 and IGF-1R siRNA, two blank control groups, with six mice each, were set up: A (2.5 μg siRNA was injected one week after C6 cells were inoculated, Le., when tumor volume reached 8 mm × 8 mm) and B (siRNA was injected at the same time with C6 cells were inoculated. To study the effects of FGF-2 siRNA, the groups consisted of a blank control group, negative control group, 2.6 μg siRNA group, 4 μg siRNA group, and 5.3 μg siRNA group, with six mice each. MAIN OUTCOME MEASURES: mRNA and protein inhibition ratio of FGF-2, IGF-1, and IGF-1 R; C6 glioma cell proliferation, apoptosis, and cycle growth arrest; C6 glioma cell growth regression and subcutaneous tumorigenicity rates. RESULTS: All siRNA constructs proved to be effective. After 48 hours, transfection of 200 nmol/L siRNA resulted in a FGF-2 or IGF-1R gene inhibition ratio 〉 80% and an IGF-1 gene inhibition ratio of approximately 70%. Protein expression levels for FGF-2, IGF-1, and IGF-1R decreased in a dose-dependent manner following siRNA transfection, with an inhibition rate 〉 85%, 60%, and 50%, respectively. C6 glioma cell proliferation and apoptosis rates increased in proportion to siRNA. The apoptosis rate of C6 glioma cells induced by FGF-2, IGF-1, and IGF-1R siRNA was 39.96%, 15.07% and 22.47%, respectively (P 〈 0.01). Transfection of 200 nmol/L IGF or IGF-1R siRNA for 48 hours suppressed C6 glioma cell migration. At 30 days after intratumoral injection of 2.6, 4, and 5.3 tJg FGF-2 siRNA, tumor growth regression rate of FGF-2 siRNA was 56%, 67%, and 86%, respectively. The tumor growth regression rate was 71.88% and 45.71%, respectively, when IGF-1 or IGF-1R siRNA was intratumorally injected 1 week after C6 glioma cell transplantation. When IGF-1 or IGF-1 R siRNA was intratumorally injected during C6 glioma cell transplantation, the tumor growth regression rate was 78.13% and 74.29%, respectively. CONCLUSION: siRNA transfection downregulated gene expression of FGF-2, IGF-1, and IGF-1R In addition, siRNA treatment markedly suppressed glioma cell proliferation, growth, and migration, and concomitantly reduced subcutaneous tumorigenicity.展开更多
New Zealand (NZ) young rabbits with the administration of insulin-like growth factor (IGF-1) and transforming growth factor-β (TGF-β) with and without mandibular anterior repositioning appliances are explored for th...New Zealand (NZ) young rabbits with the administration of insulin-like growth factor (IGF-1) and transforming growth factor-β (TGF-β) with and without mandibular anterior repositioning appliances are explored for the growth of the mandibular condylar cartilage (MCC). 32 growing NZ and rabbits were divided into 4 groups: the group with saline injection in TMJ, the group which received growth factor injection in TMJ, the group which received anterior positioning appliance and the group which received growth factors injection as well as mandibular repositioning appliance. Gene expression was studied by real-time RT-PCR and cartilage growth by histomorphometry. Administration of growth factors along with mandibular repositioning appliances has induced 1) 1.70-fold expression of Col-2Agene (p value < 0.0005) and 2) 1.47-fold expression of Col-10Agene (p value < 0.0005). In contrast, administration of only mandibular repositioning appliances induced 1) 1.28-fold expression of Col-2Agene (p value < 0.0005) and 2) merely 0.62-fold expression of Col-10Agene (p value < 0.0005), while administration of growth factors only induced 1) mere 0.56-fold expression of Col-2Agene (p value 10A gene (p value growth factors along with mandibular repositioning appliances causes an increase in genetic expressions which have been corroborated by histomorphometry and validated by statistical analysis, during an accelerated growth of mandibular condylar cartilage. Administration of growth factors in the TMJ could provide a synergistic role along with mandibular repositioning appliances for treatment of mandibular retrognathism as well as disorders on the MCC.展开更多
基金supported by the National Natural Science Foundation of China,Nos. 81873742 (to KFK), 81901195 (to JBS)Nantong Technology Project,Nos. JC2020052 (to XSG),JCZ19087 (to XSG)。
文摘Skin-derived precursor Schwann cells have been reported to play a protective role in the central nervous system. The neuroprotective effects of skin-derived precursor Schwann cells may be attributable to the release of growth factors that nourish host cells. In this study, we first established a cellular model of Parkinson’s disease using 6-hydroxydopamine. When SH-SY5 Y cells were pretreated with conditioned medium from skin-derived precursor Schwann cells, their activity was greatly increased. The addition of insulin-like growth factor-2 neutralizing antibody markedly attenuated the neuroprotective effects of skin-derived precursor Schwann cells. We also found that insulin-like growth factor-2 levels in the peripheral blood were greatly increased in patients with Parkinson’s disease and in a mouse model of Parkinson’s disease. Next, we pretreated cell models of Parkinson’s disease with insulin-like growth factor-2 and administered insulin-like growth factor-2 intranasally to a mouse model of Parkinson’s disease induced by 6-hydroxydopamine and found that the level of tyrosine hydroxylase, a marker of dopamine neurons, was markedly restored, α-synuclein aggregation decreased, and insulin-like growth factor-2 receptor downregulation was alleviated. Finally, in vitro experiments showed that insulin-like growth factor-2 activated the phosphatidylinositol 3 kinase(PI3 K)/AKT pathway. These findings suggest that the neuroprotective effects of skin-derived precursor Schwann cells on the central nervous system were achieved through insulinlike growth factor-2, and that insulin-like growth factor-2 may play a neuroprotective role through the insulin-like growth factor-2 receptor/PI3 K/AKT pathway. Therefore, insulin-like growth factor-2 may be an useful target for Parkinson’s disease treatment.
基金This work was supported by grants from the National Natural Science Foundation of China(No.81760254)the Natural Science Foundation of Fujian Province of China(No.2019J01164)the Scientific Foundation of Quanzhou City for High Level Talents(No.2019C075R).
文摘Accumulating evidence suggests that a disruption of early brain development,in which insulin-like growth factor-2(IGF-2)has a crucial role,may underlie the pathophysiology of schizophrenia.Our previous study has shown that decreased serum IGF-2 was correlated with the severity of psychopathology in patients with schizophrenia.Here we conducted a prospective observation trial to investigate the effects of atypical antipsychotics on serum IGF-2 level and its relationship with clinical improvements in schizophrenia patients.Thirty-one schizophrenia patients with acute exacerbation and 30 healthy individuals were recruited in this study.Psychiatric symptoms were assessed using the Positive and Negative Syndrome Scale(PANSS)and serum IGF-2 levels were determined using ELISA.We found that schizophrenia patients with acute exacerbation had lower serum IGF-2 levels than control individuals at baseline(P<0.05).After 2 months of atypical antipsychotic treatment,a significant improvement in each PANSS subscore and total score was observed in patients(all P<0.01),and the serum IGF-2 levels of patients were significantly increased compared with those at baseline(203.13±64.62 vs.426.99±124.26 ng/mL;t=−5.044,P<0.001).Correlation analysis revealed that the changes of serum IGF-2 levels in patients were significantly correlated with the improvements of negative symptoms(r=−0.522,P=0.006).Collectively,our findings demonstrated changes of serum IGF-2 response to improvements of negative symptoms in schizophrenia patients treated with atypical antipsychotics,suggesting that serum IGF-2 might be a treatment biomarker for schizophrenia.
文摘Background The present study aimed to investigate the detailed mode and specific sites for their binding as well as the functional relevance of this binding in the phenotypic proliferation of vascular smooth muscle cells(SMCs). Methods CREG knocked-down SMCs were employed to evaluate the biological activity of wtCREG and mCREG.Expressions of SMC differentiation markers SM myosin heavy chain(SM-MHC),SM-actin,heavy caldesmon and myocardin were determined by Western blotting using specific antibodies. Cellular growth of SMCs was assessed by bromide dewuridine (BrdU) incorporation and cell cycle analysis on fluorescence-activated cell sorting(FACS).A solid-phase binding assay was used to study the binding of CREG to extracellular domains of M6P/IGF2R.The cellular co-localization of the two recombinant CREGs with M6P/IGF2R was detected on SMC surface by immunoprecipitation and immunofluorescence analysis.Results The molecular weight of wtCREG was around 30 kD while that of the mCREG was~25 kD.Treatment of wtCREG with PNGase F reduced its molecular weight from~30 kD to~25 kD,whereas PNGase F treatment had no effect on the molecular weight of mCREG.Both wtCREG and mCREG proteins enhanced SMC differentiation,inhibited BrdU incorporation,and arrested cell cycle progression when added to the culture medium.In CREG knocked-down SMCs,the amount of CREG detected by immunoblotting in M6P/IGF2R immunoprecipitates was significantly reduced when compared to normal cells.Both recombinant CREGs co-immunoprecipitated with M6P/IGF2R, although slightly reduced amount of the mutant CREG was detected in M6P/IGF2R immunoprecipitates.Immunostaining revealed that His-tagged CREGs co-localized with IGF2R on the cell surface in a glycosylation-independent manner.In vitro binding assay showed that CREGs bound to M6P/ IGF2R extracellular domains 7-10 and 11-13 in a glycosylation -dependent and -independent manner,respectively.Further blocking experiments using soluble M6P/IGF2R fragments and M6P/IGF2R neutralizing antibody indicated that the biological activities of recombinant CREGs in SMC growth and the up-regulation of SMC differentiation markers were all abolished by treatment with the M6P/IGF2R neutralizing antibody. However,although the growth inhibitory effect of wtCREG was nearly abolished by D7-10 or D11-13,the effect of mCREG was only reversed by Dll-13,indicating that the binding to domains 11-13 is required for CREG to modulate the proliferation of SMCs.Conclusions These data suggest that solubleCREG proteins can exert their biological function via binding to the extracellular domains 7-10 and 11-13 of cell surface M6P/IGF2R in both a glycosylation-dependent and -independent manner.
基金the National Natural Science Foundation of China,No.30371459Science and Technology Development Fund of Shanghai,No.034047
文摘BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate signal transduction systems of Ras/MAPK and PI3K/Akl, which promote glioma growth. OBJECTIVE: To utilize RNA interference (RNAi) technique to down-regulate FGF-2, IGF-1, and IGF-1R gene expression, and to investigate the effects of these genes on rat C6 glioma cells, as well as the feasibility of RNAi for treating glioma. DESIGN, TIME AND SETTING: This neurooncological, randomized, controlled, in vivo and in vitro experiment, which used RNAi methodology, was performed at the Laboratory of Molecular Biology, Institute of Biochemistry, Chinese Academy of Sciences between August 2005 and February 2008. MATERIALS: Rat C6 cell lines were purchased from Shanghai Institute of Cellular Biology Affiliated to Chinese Academy of Sciences. Small interfering RNA (siRNA) was synthesized by Shanghai GenePharma. Anti-IGF-1, anti-IGF-1R, anti-FGF-2, anti-mouse and anti-rabbit IgG G1-HRP antibodies were provided by Santa Cruz Biotechnology, USA. Four to six week-old BALB/c nude mice were purchased from the Laboratory Animal Center, Chinese Academy of Sciences. METHODS: C6 glioma cells were transfected with siRNA, which was chemically synthesized in vitro to correspond to endogenous FGF-2, IGF-1, and IGF-1R genes. The inhibition ratio of targeting mRNA expression was detected by semiquantitative RT-PCR, and protein expression was determined by Western blot analysis. C6 glioma cell proliferation was observed using a growth curve C6 glioma cell apoptosis rate and cell cycle were detected by flow cytometry. C6 glioma cell growth regression was observed by transwell migration assay. In addition, nude mouse subcutaneous tumor models were used in this study. For studying the anti-tumor effects of IGF-1 and IGF-1R siRNA, two blank control groups, with six mice each, were set up: A (2.5 μg siRNA was injected one week after C6 cells were inoculated, Le., when tumor volume reached 8 mm × 8 mm) and B (siRNA was injected at the same time with C6 cells were inoculated. To study the effects of FGF-2 siRNA, the groups consisted of a blank control group, negative control group, 2.6 μg siRNA group, 4 μg siRNA group, and 5.3 μg siRNA group, with six mice each. MAIN OUTCOME MEASURES: mRNA and protein inhibition ratio of FGF-2, IGF-1, and IGF-1 R; C6 glioma cell proliferation, apoptosis, and cycle growth arrest; C6 glioma cell growth regression and subcutaneous tumorigenicity rates. RESULTS: All siRNA constructs proved to be effective. After 48 hours, transfection of 200 nmol/L siRNA resulted in a FGF-2 or IGF-1R gene inhibition ratio 〉 80% and an IGF-1 gene inhibition ratio of approximately 70%. Protein expression levels for FGF-2, IGF-1, and IGF-1R decreased in a dose-dependent manner following siRNA transfection, with an inhibition rate 〉 85%, 60%, and 50%, respectively. C6 glioma cell proliferation and apoptosis rates increased in proportion to siRNA. The apoptosis rate of C6 glioma cells induced by FGF-2, IGF-1, and IGF-1R siRNA was 39.96%, 15.07% and 22.47%, respectively (P 〈 0.01). Transfection of 200 nmol/L IGF or IGF-1R siRNA for 48 hours suppressed C6 glioma cell migration. At 30 days after intratumoral injection of 2.6, 4, and 5.3 tJg FGF-2 siRNA, tumor growth regression rate of FGF-2 siRNA was 56%, 67%, and 86%, respectively. The tumor growth regression rate was 71.88% and 45.71%, respectively, when IGF-1 or IGF-1R siRNA was intratumorally injected 1 week after C6 glioma cell transplantation. When IGF-1 or IGF-1 R siRNA was intratumorally injected during C6 glioma cell transplantation, the tumor growth regression rate was 78.13% and 74.29%, respectively. CONCLUSION: siRNA transfection downregulated gene expression of FGF-2, IGF-1, and IGF-1R In addition, siRNA treatment markedly suppressed glioma cell proliferation, growth, and migration, and concomitantly reduced subcutaneous tumorigenicity.
文摘New Zealand (NZ) young rabbits with the administration of insulin-like growth factor (IGF-1) and transforming growth factor-β (TGF-β) with and without mandibular anterior repositioning appliances are explored for the growth of the mandibular condylar cartilage (MCC). 32 growing NZ and rabbits were divided into 4 groups: the group with saline injection in TMJ, the group which received growth factor injection in TMJ, the group which received anterior positioning appliance and the group which received growth factors injection as well as mandibular repositioning appliance. Gene expression was studied by real-time RT-PCR and cartilage growth by histomorphometry. Administration of growth factors along with mandibular repositioning appliances has induced 1) 1.70-fold expression of Col-2Agene (p value < 0.0005) and 2) 1.47-fold expression of Col-10Agene (p value < 0.0005). In contrast, administration of only mandibular repositioning appliances induced 1) 1.28-fold expression of Col-2Agene (p value < 0.0005) and 2) merely 0.62-fold expression of Col-10Agene (p value < 0.0005), while administration of growth factors only induced 1) mere 0.56-fold expression of Col-2Agene (p value 10A gene (p value growth factors along with mandibular repositioning appliances causes an increase in genetic expressions which have been corroborated by histomorphometry and validated by statistical analysis, during an accelerated growth of mandibular condylar cartilage. Administration of growth factors in the TMJ could provide a synergistic role along with mandibular repositioning appliances for treatment of mandibular retrognathism as well as disorders on the MCC.