期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Intelligent prediction on air intake flow of spark ignition engine by a chaos radial basis function neural network 被引量:1
1
作者 LI Yue-lin LIU Bo-fu +3 位作者 WU Gang LIU Zhi-qiang DING Jing-feng ABUBAKAR Shitu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2687-2695,共9页
To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.T... To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.The data of air intake flow is proved to be multidimensionally nonlinear and chaotic.The RBF neural network is used to train the reconstructed phase space of the data.The chaos algorithm is employed to optimize the weights of output layer connection and the radial basis center of Gaussian function in hidden layer.The simulation results obtained from Matlab/Simulink illustrate that the model has higher accuracy compared to the conventional RBF model.The mean absolute error and the mean relative error of the chaos RBF model can reach 0.0017 and 0.48,respectively. 展开更多
关键词 intake air flow spark ignition engine CHAOS RBF neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部