The intake swirl in the cylinder was induced by a swirler which was fixed in one of two intake ports. In order to understand the characteristics of the intake swirl, a transparent water analog was designed which simul...The intake swirl in the cylinder was induced by a swirler which was fixed in one of two intake ports. In order to understand the characteristics of the intake swirl, a transparent water analog was designed which simulated 150 type single cylinder engine. At the same time, the particle image velocimetry was used to measure the flow fields induced by various swirlers in the analog. After measurement, a new method was presented to evaluate the intensity of the intake swirl. Then, when the measured sections, the lifts of valve and the swirlers were different, the calculated results of the flow field were compared.展开更多
In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about th...In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.展开更多
In order to effectively implement DPF(Diesel Particulate Filters)regeneration control,thermal management of exhaust products before and inside Diesel Oxidation Catalyst(DOC)is necessary.In the present study,the Influe...In order to effectively implement DPF(Diesel Particulate Filters)regeneration control,thermal management of exhaust products before and inside Diesel Oxidation Catalyst(DOC)is necessary.In the present study,the Influence of the intake throttle valve and late post injection process on temperature rise inside DOC is analyzed through engine bench tests.The steady experiment results show that adjustment of the intake throttle valve can effectively increase exhaust temperature before DOC;in particular,with intake throttle valve opening at 20%,temperature before DOC can be increased by about 170℃ with respect to the full opening.An increase in the late post injection quantity can produce a significant rise of the temperature inside DOC,however its impact on the exhaust temperature before DOC is relatively limited.As the late post injection quantity increases,Hydrocarbon(HC)emissions also grow;in the present work it is shown that with a proper injection quantity,a considerable temperature increase inside the DOC can be obtained with relatively low HC emission.More specifically,with the intake throttle valve at 30%and DOC reaching ignition temperature as the late post injection quantity is increased,the exhaust temperature after DOC can be made larger than 550℃,adequate for DPF active regeneration.展开更多
To compute the matching performance of diesel engine with variable geometry turboeharger(VGT), the formerly used program is improved through adjustment of turbine mass flow rate and efficiency characteristics. The c...To compute the matching performance of diesel engine with variable geometry turboeharger(VGT), the formerly used program is improved through adjustment of turbine mass flow rate and efficiency characteristics. The calculation result is applied to forecast the performance of J6110Z diesel engine with rotary-vaned VGT70, and to guide the improvement of engine fuel supply. The computed engine performance curve coincides with the experiment result well: the low-speed torque, fuel economy, exhaust temperature and boost pressure of the VGT engine are all improved.展开更多
This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used...This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine in-take system.展开更多
To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.T...To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.The data of air intake flow is proved to be multidimensionally nonlinear and chaotic.The RBF neural network is used to train the reconstructed phase space of the data.The chaos algorithm is employed to optimize the weights of output layer connection and the radial basis center of Gaussian function in hidden layer.The simulation results obtained from Matlab/Simulink illustrate that the model has higher accuracy compared to the conventional RBF model.The mean absolute error and the mean relative error of the chaos RBF model can reach 0.0017 and 0.48,respectively.展开更多
Based on the analysis of characteristics and advantages of HSO(harmony search optimization) algorithm, HSO was used in reservoir engineering assisted history matching of Kareem reservoir in Amal field in the Gulf of S...Based on the analysis of characteristics and advantages of HSO(harmony search optimization) algorithm, HSO was used in reservoir engineering assisted history matching of Kareem reservoir in Amal field in the Gulf of Suez, Egypt. HSO algorithm has the following advantages:(1) The good balance between exploration and exploitation techniques during searching for optimal solutions makes the HSO algorithm robust and efficient.(2) The diversity of generated solutions is more effectively controlled by two components, making it suitable for highly non-linear problems in reservoir engineering history matching.(3) The integration between the three components(harmony memory values, pitch adjusting and randomization) of the HSO helps in finding unbiased solutions.(4) The implementation process of the HSO algorithm is much easier. The HSO algorithm and two other commonly used algorithms(genetic and particle swarm optimization algorithms) were used in three reservoir engineering history match questions of different complex degrees, which are two material balance history matches of different scales and one reservoir history matching. The results were compared, which proves the superiority and validity of HSO. The results of Kareem reservoir history matching show that using the HSO algorithm as the optimization method in the assisted history matching workflow improves the simulation quality and saves solution time significantly.展开更多
In this study,a one-dimensional simulation was performed to evaluate the performance of in-cylinder combustion to control NO_(x) emissions on a four-stroke,six-cylinder marine medium-speed diesel engine.Reducing the c...In this study,a one-dimensional simulation was performed to evaluate the performance of in-cylinder combustion to control NO_(x) emissions on a four-stroke,six-cylinder marine medium-speed diesel engine.Reducing the combustion temperature is an important in-cylinder measure to decrease NO_(x) emissions of marine diesel engines.The Miller cycle is an effective method used to reduce the maximum combustion temperature in a cylinder and accordingly decrease NO_(x) emissions.Therefore,the authors of this study designed seven different early intake valve closing(EIVC)Miller cycles for the original engine,and analyzed the cycle effects on combustions and emissions in high-load conditions.The results indicate that the temperature in the cylinder was significantly reduced,whereas fuel consumption was almost unchanged.When the IVC was properly advanced,the ignition delay period increased and the premixed combustion accelerated,but the in-cylinder average pressure,temperature and NO_(x) emissions in the cylinder were lower than the original engine.However,closing the intake valve too early led to high fuel consumption.In addition,the NO_(x) emissions,in-cylinder temperature,and heat release rate remarkably increased.Therefore,the optimal timing of the EIVC varied with different loads.The higher the load was,the earlier the best advance angle appeared.Therefore,the Miller cycle is an effective method for in-engine NO_(x) purification and does not entail significant cost.展开更多
A one-dimensional pipe flow model of single-cylinder diesel engine is established to investigate the intake and exhaust flow characteristics of diesel engine in the condition of high power density(HPD).A space-lime co...A one-dimensional pipe flow model of single-cylinder diesel engine is established to investigate the intake and exhaust flow characteristics of diesel engine in the condition of high power density(HPD).A space-lime conservation element and solution element(CE/SE)method is used to derive the discrete equations of the partial differential equation for the intake and exhaust systems.The performance parameters of diesel engine with speed of 2100 r/min are simulated.The simulated results are in accordance with the experimental data.The effect of increased power density on charging coefficient is analyzed using a validated model.The results show that the charging coefficient is slowly improved with the increase in intake pressure,and is obviously reduced with the increase in engine speed.展开更多
In order to study component matching which exists in off-design situation at the initial design stage of turbine engine,by establishing performance analysis model of low bypass ratio mixed flow turbofan engine and com...In order to study component matching which exists in off-design situation at the initial design stage of turbine engine,by establishing performance analysis model of low bypass ratio mixed flow turbofan engine and components characteristic data,and by applying Newton-Raphson method to solve the nonlinear equations of offdesign points in flying envelop,the factors which affect matching between engine components are studied.The results show that low pressure turbine(LPT)must not operate in a critical condition,and the partial derivative(slope)of pressure ratio to similitude mass flow ratio of working point in LPT characteristic map affects the stability of engine.The smaller the slope is,the more stable the engine is.In addition,the engine is more stable when the fan characteristic map is steep.展开更多
The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal ...The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal combustion engine is identified,which is believed to be one of the important limiting factors of energy efficiency for conventional engines available in the current market.An approach for engine efficiency improvement through optimal matching between mechanics and thermodynamics(OMBMT)is proposed.An ideal matching model is defined and the conflicts due to the constraints among the mapping strokes in a 4-stroke engine are analyzed.A novel mechanical model is built for approaching optimal matching among all 4 individual strokes in a 4-stroke spark-ignition engine,which is composed of non-circular gears(NCG)and integrated with conventional slider crank engine mechanism.By means of digital mechanical model and numerical simulation,the matching gains among all 4 strokes are defined and calculated for quantifying the NCG engine efficiency improvement by comparing with a baseline engine.The potentials with the OMBMT implemented and the enhancements made by NCG mechanism for engines in terms of overall engine efficiency are reported.Based on the results achieved,it is recommended that the feasibility studies and the experimental validations should be conducted to verify the engine matching concept and effectiveness of the NCG mechanism engine model proposed,and the engine performance and NCG design parameters should be further optimized.展开更多
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently...Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.展开更多
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field...The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.展开更多
Intake system of diesel engine is a strong nonlinear system, and it is difficult to establish accurate model of intake system; and bias fault and precision degradation fault of MAP of diesel engine can't be diagnosed...Intake system of diesel engine is a strong nonlinear system, and it is difficult to establish accurate model of intake system; and bias fault and precision degradation fault of MAP of diesel engine can't be diagnosed easily using model-based methods. Thus, a fault diagnosis method based on Elman neural network observer is proposed. By comparing simulation results of intake pressure based on BP network and Elman neural network, lower sampling error magnitude is gained using Elman neural network, and the error is less volatile. Forecast accuracy is between 0.015?0.017 5 and sample error is controlled within 0?0.07. Considering the output stability and complexity of solving comprehensively, Elman neural network with a single hidden layer and with 44 nodes is presented as intake system observer. By comparing the relations of confidence intervals of the residual value between the measured and predicted values, error variance and failures in various fault types. Then four typical MAP faults of diesel engine can be diagnosed: complete failure fault, bias fault, precision degradation fault and drift fault. The simulation results show: intake pressure is observable and selection of diagnostic strategy parameter reasonably can increase the accuracy of diagnosis;the proposed fault diagnosis method only depends on data and structural parameters of observer, not depends on the nonlinear model of air intake system. A fault diagnosis method is proposed not depending system model to observe intake pressure, and bias fault and precision degradation fault of MAP of diesel engine can be diagnosed based on residuals.展开更多
Computational Fluid Dynamics is used to assess the thermal(heat transfer)performances of an automobile engine considering different grille opening and closing degrees.For this purpose the entire vehicle is modelled an...Computational Fluid Dynamics is used to assess the thermal(heat transfer)performances of an automobile engine considering different grille opening and closing degrees.For this purpose the entire vehicle is modelled and three fundamental aspects are examined,namely,the open area of the air intake grille,the position of the upper and lower grilles and their shape.The results show that the opening area and position of the grille have some influence also on the aerodynamic characteristics of the automobile.With an increase in the opening angle of the grille,the CD(Drag Coefficient)value of the whole vehicle becomes higher.When the air intake grille of the car is fully open or closed,the CD value is 0.35434 or 0.31777,respectively,that is,the flow resistance in the engine compartment accounts for 10.32%of the CD value for the whole automobile.展开更多
This paper has proposed an error searching method to search the solutions of errors that occurred in the unified commanding platform mix-deployed software (UCPMD). Because those errors belong to different stages or ma...This paper has proposed an error searching method to search the solutions of errors that occurred in the unified commanding platform mix-deployed software (UCPMD). Because those errors belong to different stages or may be happened in different services, applications, IP ports, system software, or different versions of software, and those errors are also can be classified into different types. It is necessary to locate accurate reason that cause an error as well as find out its solution. The proposed error searching system applies Chinese keyword extraction and Chinese fuzzy matching between keywords, which considers the processed keywords as the index to find out the solutions of errors. Besides, the error searching system had made correspondence among errors, reasons, and solutions, and put them to different categories in terms of their characteristics, such that it is easy to manage, search, and use. Among others, we have added specialized thesaurus as the index of keywords, which enriches and completes the searching results. Because of the proposed error searching system evolves keyword extraction and keyword fuzzy matching technologies;it is more accurate to find out user-interested solutions.展开更多
The results of analysis of technical possibilities to increase engine efficiency were presented in this article. This problem was connected with kinematics properties of air inflow to the combustion chamber. The possi...The results of analysis of technical possibilities to increase engine efficiency were presented in this article. This problem was connected with kinematics properties of air inflow to the combustion chamber. The possibilities of intake airflow modulation have a positive impact on combustion process, level of engine usable parameters and emission. This issue was presented on the results of experimental research. Results of baseline research gave information about the flow resistance. On the basis of results of experimental research, conclusions were formulated.展开更多
The purpose of this research is to clarify causes for the change in aerodynamic characteristics of a road vehicle model due to engine cooling flow in wind-tunnel experiments with the moving-belt ground board, in order...The purpose of this research is to clarify causes for the change in aerodynamic characteristics of a road vehicle model due to engine cooling flow in wind-tunnel experiments with the moving-belt ground board, in order to propose methods to reduce the drag and lift. With regard to engine cooling flow, the air-intake system was adjusted with variable opening area and position for the engine loading system of FF and FR with and without a radiator. A simplified 1/5 scale vehicle model was manufactured with transparent externals around the engine for flow visualization. The overall results show that with enlargement of the opening area, the drag and the front lift increased and the rear lift decreased. The flow visualization and the measurements of underfloor velocity and surface pressure indicated the cause of the characteristics changes. Enlargement of the opening area causes flow disturbance by merging of the scavenging flow and the underfloor flow, which has blockage effects for the upstream of each flow with keeping high pressure in the engine compartment and causes pressure loss under the floor behind the engine unit. The difference between the two engine loading systems lies indirection and location of the engine unit, which causes the differences of how the flow features affect the aerodynamic characteristics. The effect of the radiator is to reduce the range of changes in drag and lift. Finally, it is discussed that the principle of reducing drag and lift is to suppress interference of scavenging flow, and concrete methods are proposed.展开更多
文摘The intake swirl in the cylinder was induced by a swirler which was fixed in one of two intake ports. In order to understand the characteristics of the intake swirl, a transparent water analog was designed which simulated 150 type single cylinder engine. At the same time, the particle image velocimetry was used to measure the flow fields induced by various swirlers in the analog. After measurement, a new method was presented to evaluate the intensity of the intake swirl. Then, when the measured sections, the lifts of valve and the swirlers were different, the calculated results of the flow field were compared.
文摘In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.
基金supported by the Ministry of Science and Technology of the People’s Republic of China[grant numbers 2017YFC0211304]the Natural Science Foundation of Shandong Province[grant number ZR2019MEE041]the Open Fund of the National Engineering Laboratory for Mobile Source Emission Control Technology[grant number NELMS2017A14].
文摘In order to effectively implement DPF(Diesel Particulate Filters)regeneration control,thermal management of exhaust products before and inside Diesel Oxidation Catalyst(DOC)is necessary.In the present study,the Influence of the intake throttle valve and late post injection process on temperature rise inside DOC is analyzed through engine bench tests.The steady experiment results show that adjustment of the intake throttle valve can effectively increase exhaust temperature before DOC;in particular,with intake throttle valve opening at 20%,temperature before DOC can be increased by about 170℃ with respect to the full opening.An increase in the late post injection quantity can produce a significant rise of the temperature inside DOC,however its impact on the exhaust temperature before DOC is relatively limited.As the late post injection quantity increases,Hydrocarbon(HC)emissions also grow;in the present work it is shown that with a proper injection quantity,a considerable temperature increase inside the DOC can be obtained with relatively low HC emission.More specifically,with the intake throttle valve at 30%and DOC reaching ignition temperature as the late post injection quantity is increased,the exhaust temperature after DOC can be made larger than 550℃,adequate for DPF active regeneration.
基金the Ministerial Level Advanced Research Foundation (37256)
文摘To compute the matching performance of diesel engine with variable geometry turboeharger(VGT), the formerly used program is improved through adjustment of turbine mass flow rate and efficiency characteristics. The calculation result is applied to forecast the performance of J6110Z diesel engine with rotary-vaned VGT70, and to guide the improvement of engine fuel supply. The computed engine performance curve coincides with the experiment result well: the low-speed torque, fuel economy, exhaust temperature and boost pressure of the VGT engine are all improved.
文摘This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine in-take system.
基金Project(51176014)supported by the National Natural Science Foundation of ChinaProject(2016JJ2003)supported by Natural Scienceof Hunan Province,ChinaProject(KF1605)supported by Key Laboratory of Safety Design and Reliability Technology of Engineering Vehicle in Hunan Province,China。
文摘To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.The data of air intake flow is proved to be multidimensionally nonlinear and chaotic.The RBF neural network is used to train the reconstructed phase space of the data.The chaos algorithm is employed to optimize the weights of output layer connection and the radial basis center of Gaussian function in hidden layer.The simulation results obtained from Matlab/Simulink illustrate that the model has higher accuracy compared to the conventional RBF model.The mean absolute error and the mean relative error of the chaos RBF model can reach 0.0017 and 0.48,respectively.
文摘Based on the analysis of characteristics and advantages of HSO(harmony search optimization) algorithm, HSO was used in reservoir engineering assisted history matching of Kareem reservoir in Amal field in the Gulf of Suez, Egypt. HSO algorithm has the following advantages:(1) The good balance between exploration and exploitation techniques during searching for optimal solutions makes the HSO algorithm robust and efficient.(2) The diversity of generated solutions is more effectively controlled by two components, making it suitable for highly non-linear problems in reservoir engineering history matching.(3) The integration between the three components(harmony memory values, pitch adjusting and randomization) of the HSO helps in finding unbiased solutions.(4) The implementation process of the HSO algorithm is much easier. The HSO algorithm and two other commonly used algorithms(genetic and particle swarm optimization algorithms) were used in three reservoir engineering history match questions of different complex degrees, which are two material balance history matches of different scales and one reservoir history matching. The results were compared, which proves the superiority and validity of HSO. The results of Kareem reservoir history matching show that using the HSO algorithm as the optimization method in the assisted history matching workflow improves the simulation quality and saves solution time significantly.
基金Supported by the Industry-University-Research Collaboration Project of Jiangsu Province(Grant No.BY2019048)the 19th batch of student scientific research projects of Jiangsu University(19A306)。
文摘In this study,a one-dimensional simulation was performed to evaluate the performance of in-cylinder combustion to control NO_(x) emissions on a four-stroke,six-cylinder marine medium-speed diesel engine.Reducing the combustion temperature is an important in-cylinder measure to decrease NO_(x) emissions of marine diesel engines.The Miller cycle is an effective method used to reduce the maximum combustion temperature in a cylinder and accordingly decrease NO_(x) emissions.Therefore,the authors of this study designed seven different early intake valve closing(EIVC)Miller cycles for the original engine,and analyzed the cycle effects on combustions and emissions in high-load conditions.The results indicate that the temperature in the cylinder was significantly reduced,whereas fuel consumption was almost unchanged.When the IVC was properly advanced,the ignition delay period increased and the premixed combustion accelerated,but the in-cylinder average pressure,temperature and NO_(x) emissions in the cylinder were lower than the original engine.However,closing the intake valve too early led to high fuel consumption.In addition,the NO_(x) emissions,in-cylinder temperature,and heat release rate remarkably increased.Therefore,the optimal timing of the EIVC varied with different loads.The higher the load was,the earlier the best advance angle appeared.Therefore,the Miller cycle is an effective method for in-engine NO_(x) purification and does not entail significant cost.
文摘A one-dimensional pipe flow model of single-cylinder diesel engine is established to investigate the intake and exhaust flow characteristics of diesel engine in the condition of high power density(HPD).A space-lime conservation element and solution element(CE/SE)method is used to derive the discrete equations of the partial differential equation for the intake and exhaust systems.The performance parameters of diesel engine with speed of 2100 r/min are simulated.The simulated results are in accordance with the experimental data.The effect of increased power density on charging coefficient is analyzed using a validated model.The results show that the charging coefficient is slowly improved with the increase in intake pressure,and is obviously reduced with the increase in engine speed.
基金supported in part by the Fundamental Research Funds for the Central Universities(No.NZ2016103)
文摘In order to study component matching which exists in off-design situation at the initial design stage of turbine engine,by establishing performance analysis model of low bypass ratio mixed flow turbofan engine and components characteristic data,and by applying Newton-Raphson method to solve the nonlinear equations of offdesign points in flying envelop,the factors which affect matching between engine components are studied.The results show that low pressure turbine(LPT)must not operate in a critical condition,and the partial derivative(slope)of pressure ratio to similitude mass flow ratio of working point in LPT characteristic map affects the stability of engine.The smaller the slope is,the more stable the engine is.In addition,the engine is more stable when the fan characteristic map is steep.
文摘The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal combustion engine is identified,which is believed to be one of the important limiting factors of energy efficiency for conventional engines available in the current market.An approach for engine efficiency improvement through optimal matching between mechanics and thermodynamics(OMBMT)is proposed.An ideal matching model is defined and the conflicts due to the constraints among the mapping strokes in a 4-stroke engine are analyzed.A novel mechanical model is built for approaching optimal matching among all 4 individual strokes in a 4-stroke spark-ignition engine,which is composed of non-circular gears(NCG)and integrated with conventional slider crank engine mechanism.By means of digital mechanical model and numerical simulation,the matching gains among all 4 strokes are defined and calculated for quantifying the NCG engine efficiency improvement by comparing with a baseline engine.The potentials with the OMBMT implemented and the enhancements made by NCG mechanism for engines in terms of overall engine efficiency are reported.Based on the results achieved,it is recommended that the feasibility studies and the experimental validations should be conducted to verify the engine matching concept and effectiveness of the NCG mechanism engine model proposed,and the engine performance and NCG design parameters should be further optimized.
基金the National Nature Science Foundation of China(No.22305066).
文摘Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.
基金This work was supported by the National Natural Science Foundation of China(52372289,52102368,52072192 and 51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020SA001515110905).
文摘The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.
文摘Intake system of diesel engine is a strong nonlinear system, and it is difficult to establish accurate model of intake system; and bias fault and precision degradation fault of MAP of diesel engine can't be diagnosed easily using model-based methods. Thus, a fault diagnosis method based on Elman neural network observer is proposed. By comparing simulation results of intake pressure based on BP network and Elman neural network, lower sampling error magnitude is gained using Elman neural network, and the error is less volatile. Forecast accuracy is between 0.015?0.017 5 and sample error is controlled within 0?0.07. Considering the output stability and complexity of solving comprehensively, Elman neural network with a single hidden layer and with 44 nodes is presented as intake system observer. By comparing the relations of confidence intervals of the residual value between the measured and predicted values, error variance and failures in various fault types. Then four typical MAP faults of diesel engine can be diagnosed: complete failure fault, bias fault, precision degradation fault and drift fault. The simulation results show: intake pressure is observable and selection of diagnostic strategy parameter reasonably can increase the accuracy of diagnosis;the proposed fault diagnosis method only depends on data and structural parameters of observer, not depends on the nonlinear model of air intake system. A fault diagnosis method is proposed not depending system model to observe intake pressure, and bias fault and precision degradation fault of MAP of diesel engine can be diagnosed based on residuals.
文摘Computational Fluid Dynamics is used to assess the thermal(heat transfer)performances of an automobile engine considering different grille opening and closing degrees.For this purpose the entire vehicle is modelled and three fundamental aspects are examined,namely,the open area of the air intake grille,the position of the upper and lower grilles and their shape.The results show that the opening area and position of the grille have some influence also on the aerodynamic characteristics of the automobile.With an increase in the opening angle of the grille,the CD(Drag Coefficient)value of the whole vehicle becomes higher.When the air intake grille of the car is fully open or closed,the CD value is 0.35434 or 0.31777,respectively,that is,the flow resistance in the engine compartment accounts for 10.32%of the CD value for the whole automobile.
文摘This paper has proposed an error searching method to search the solutions of errors that occurred in the unified commanding platform mix-deployed software (UCPMD). Because those errors belong to different stages or may be happened in different services, applications, IP ports, system software, or different versions of software, and those errors are also can be classified into different types. It is necessary to locate accurate reason that cause an error as well as find out its solution. The proposed error searching system applies Chinese keyword extraction and Chinese fuzzy matching between keywords, which considers the processed keywords as the index to find out the solutions of errors. Besides, the error searching system had made correspondence among errors, reasons, and solutions, and put them to different categories in terms of their characteristics, such that it is easy to manage, search, and use. Among others, we have added specialized thesaurus as the index of keywords, which enriches and completes the searching results. Because of the proposed error searching system evolves keyword extraction and keyword fuzzy matching technologies;it is more accurate to find out user-interested solutions.
文摘The results of analysis of technical possibilities to increase engine efficiency were presented in this article. This problem was connected with kinematics properties of air inflow to the combustion chamber. The possibilities of intake airflow modulation have a positive impact on combustion process, level of engine usable parameters and emission. This issue was presented on the results of experimental research. Results of baseline research gave information about the flow resistance. On the basis of results of experimental research, conclusions were formulated.
文摘The purpose of this research is to clarify causes for the change in aerodynamic characteristics of a road vehicle model due to engine cooling flow in wind-tunnel experiments with the moving-belt ground board, in order to propose methods to reduce the drag and lift. With regard to engine cooling flow, the air-intake system was adjusted with variable opening area and position for the engine loading system of FF and FR with and without a radiator. A simplified 1/5 scale vehicle model was manufactured with transparent externals around the engine for flow visualization. The overall results show that with enlargement of the opening area, the drag and the front lift increased and the rear lift decreased. The flow visualization and the measurements of underfloor velocity and surface pressure indicated the cause of the characteristics changes. Enlargement of the opening area causes flow disturbance by merging of the scavenging flow and the underfloor flow, which has blockage effects for the upstream of each flow with keeping high pressure in the engine compartment and causes pressure loss under the floor behind the engine unit. The difference between the two engine loading systems lies indirection and location of the engine unit, which causes the differences of how the flow features affect the aerodynamic characteristics. The effect of the radiator is to reduce the range of changes in drag and lift. Finally, it is discussed that the principle of reducing drag and lift is to suppress interference of scavenging flow, and concrete methods are proposed.