This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram...This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.展开更多
With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is ...With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security.展开更多
With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)...With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points(NCPs).Considering the amount of task data and the idle resources of NCPs,a computing resource scheduling model for NCPs is established.Taking the heterogeneous task execution delay threshold as a constraint,the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs.The proposed problem is proven to be NP-hard by using the method of reduction to a 0-1 knapsack problem.A many-to-many matching algorithm based on resource preferences is proposed.The algorithm first establishes the mutual preference lists based on the adaptability of the task requirements and the resources provided by NCPs.This enables the filtering out of un-schedulable NCPs in the initial stage of matching,reducing the solution space dimension.To solve the matching problem between ICVs and NCPs,a new manyto-many matching algorithm is proposed to obtain a unique and stable optimal matching result.The simulation results demonstrate that the proposed scheme can improve the resource utilization of NCPs by an average of 9.6%compared to the reference scheme,and the total performance can be improved by up to 15.9%.展开更多
The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connec...The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connected vehicle data, enhanced weather data, and fleet telematics, have been integrated into INDOT winter operations activities. The objective of this study was to use these new data sources to conduct a systematic evaluation of the robustness of the MDSS forecasts. During the 2023-2024 winter season, 26 unique MDSS forecast data attributes were collected at 0, 1, 3, 6, 12 and 23-hour intervals from the observed storm time for 6 roadway segments during 13 individual storms. In total, over 888,000 MDSS data points were archived for this evaluation. This study developed novel visualizations to compare MDSS forecasts to multiple other independent data sources, including connected vehicle data, National Oceanic and Atmospheric Administration (NOAA) weather data, road friction data and snowplow telematics. Three Indiana storms, with varying characteristics and severity, were analyzed in detailed case studies. Those storms occurred on January 6th, 2024, January 13th, 2024 and February 16th, 2024. Incorporating these visualizations into winter weather after-action reports increases the robustness of post-storm performance analysis and allows road weather stakeholders to better understand the capabilities of MDSS. The results of this analysis will provide a framework for future MDSS evaluations and implementations as well as training tools for winter operation stakeholders in Indiana and beyond.展开更多
In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network techno...In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network technology,effectively reduces carbon emissions in the transportation sector,improves energy utilization efficiency,and contributes to the green transportation system through intelligent transportation management and collaborative work between vehicles,making significant contributions.This article aims to explore the development of intelligent network-connected new energy vehicle technology and applications under the dual-carbon strategy and lay the foundation for the future development direction of the automotive industry.展开更多
Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumpti...Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.展开更多
The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for...The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data.展开更多
Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicl...Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicle(V2V)technology is difficult to break through the sensing blind area and ensure reliable sensing information.To overcome these problems,considering infrastructures as a means to extend the sensing range is feasible based on the integrated sensing and communication(ISAC)technology.The mmWave base station(mmBS)transmits multiple beams consisting of communication beams and sensing beams.The sensing beams are responsible for sensing objects within the CAVs blind area,while the communication beams are responsible for transmitting the sensed information to the CAVs.To reduce the impact of inter-beam interference,a joint multiple beamwidth and power allocation(JMBPA)algorithm is proposed.By maximizing the communication transmission rate under the sensing constraints.The proposed non-convex optimization problem is transformed into a standard difference of two convex functions(D.C.)problem.Finally,the superiority of the lutions.The average transmission rate of communication beams remains over 3.4 Gbps,showcasing a significant improvement compared to other algorithms.Moreover,the satisfaction of sensing services remains steady.展开更多
Connected vehicle(CV)is regarded as a typical feature of the future road transportation system.One core benefit of promoting CV is to improve traffic safety,and to achieve that,accurate driving risk assessment under V...Connected vehicle(CV)is regarded as a typical feature of the future road transportation system.One core benefit of promoting CV is to improve traffic safety,and to achieve that,accurate driving risk assessment under Vehicle-to-Vehicle(V2V)communications is critical.There are two main differences concluded by comparing driving risk assessment under the CV environment with traditional ones:(1)the CV environment provides high-resolution and multi-dimensional data,e.g.,vehicle trajectory data,(2)Rare existing studies can comprehensively address the heterogeneity of the vehicle operating environment,e.g.,the multiple interacting objects and the time-series variability.Hence,this study proposes a driving risk assessment framework under the CV environment.Specifically,first,a set of time-series top views was proposed to describe the CV environment data,expressing the detailed information on the vehicles surrounding the subject vehicle.Then,a hybrid CNN-LSTM model was established with the CNN component extracting the spatial interaction with multiple interacting vehicles and the LSTM component solving the time-series variability of the driving environment.It is proved that this model can reach an AUC of 0.997,outperforming the existing machine learning algorithms.This study contributes to the improvement of driving risk assessment under the CV environment.展开更多
Digital twin is an essential enabling technology for 6G connected vehicles.Through highfidelity mobility simulation,digital twin is expected to make accurate prediction about the vehicle trajectory,and then support in...Digital twin is an essential enabling technology for 6G connected vehicles.Through highfidelity mobility simulation,digital twin is expected to make accurate prediction about the vehicle trajectory,and then support intelligent applications such as safety monitoring and self-driving for connected vehicles.However,it is observed that even if a digital twin model is perfectly derived,it might still fail to predict the trajectory due to tiny measurement noise or delay in the initial vehicle locations.This paper aims at investigating the sources of unpredictability of digital twin.Take the car-following behaviors in connected vehicles for case study.The theoretical analysis and experimental results indicate that the predictability of digital twin naturally depends on its system complexity.Once a system enters a complex pattern,its longterm states are unpredictable.Furthermore,our study discloses that the complexity is determined,on the one hand,by the intrinsic factors of the target physical system such as the driver’s response sensitivity and delay,and on the other hand,by the crucial parameters of the digital twin system such as the sampling interval and twining latency.展开更多
As a form of a future traffic system,a connected and automated vehicle(CAV)platoon is a typical nonlinear physical system.CAVs can communicate with each other and exchange information.However,communication failures ca...As a form of a future traffic system,a connected and automated vehicle(CAV)platoon is a typical nonlinear physical system.CAVs can communicate with each other and exchange information.However,communication failures can change the platoon system status.To characterize this change,a dynamic topology-based car-following model and its generalized form are proposed in this work.Then,a stability analysis method is explored.Finally,taking the dynamic cooperative intelligent driver model(DC-IDM)for example,a series of numerical simulations is conducted to analyze the platoon stability in different communication topology scenarios.The results show that the communication failures reduce the stability,but information from vehicles that are farther ahead and the use of a larger desired time headway can improve stability.Moreover,the critical ratio of communication failures required to ensure stability for different driving parameters is studied in this work.展开更多
This paper investigates the traffic flow of connected and automated vehicles(CAVs)inducing by a moving bottleneck on a two-lane highway.A heuristic rules-based algorithm(HRA)has been used to control the traffic flow u...This paper investigates the traffic flow of connected and automated vehicles(CAVs)inducing by a moving bottleneck on a two-lane highway.A heuristic rules-based algorithm(HRA)has been used to control the traffic flow upstream of the moving bottleneck.In the HRA,some CAVs in the control zone are mapped onto the neighboring lane as virtual ones.To improve the driving comfort,the command acceleration caused by virtual vehicle is restricted.Comparing with the benchmark in which the CAVs change lane as soon as the lane changing condition is met,the HRA significantly improves the traffic flow:the overtaking throughput as well as the outflow rate increases,the travel delay and the fuel consumption decrease,the comfort level could also be improved.展开更多
This paper investigates traffic flow of connected and automated vehicles at lane drop on two-lane highway. We evaluate and compare performance of an optimization-based control algorithm(OCA) with that of a heuristic r...This paper investigates traffic flow of connected and automated vehicles at lane drop on two-lane highway. We evaluate and compare performance of an optimization-based control algorithm(OCA) with that of a heuristic rules-based algorithm(HRA). In the OCA, the average speed of each vehicle is maximized. In the HRA, virtual vehicle and restriction of the command acceleration caused by the virtual vehicle are introduced. It is found that(i) capacity under the HRA(denoted as C_(H)) is smaller than capacity under the OCA;(ii) the travel delay is always smaller under the OCA, but driving is always much more comfortable under the HRA;(iii) when the inflow rate is smaller than C_(H), the HRA outperforms the OCA with respect to the fuel consumption and the monetary cost;(iv) when the inflow rate is larger than C_(H), the HRA initially performs better with respect to the fuel consumption and the monetary cost, but the OCA would become better after certain time. The spatiotemporal pattern and speed profile of traffic flow are presented, which explains the reason underlying the different performance. The study is expected to help for better understanding of the two different types of algorithm.展开更多
Historical roadway safety analyses have used labor and time-intensive crash data collection procedures. However, crash reporting is often delayed and crash locations are reported with varying levels of spatial accurac...Historical roadway safety analyses have used labor and time-intensive crash data collection procedures. However, crash reporting is often delayed and crash locations are reported with varying levels of spatial accuracy and detail. Recent advances in connected vehicle (CV) data provide an opportunity for stakeholders to proactively identify areas of safety concerns in near-real time with high spatial precision. Public and private sector stakeholders including automotive original equipment manufacturers (OEM) and insurance providers may independently define acceleration thresholds for reporting unsafe driver behavior. Although some OEMs have provided fixed threshold hard-braking event data for a number of years, this varies by OEM and there is no published literature on the best thresholds to use for identifying emerging safety issues. This research proposes a methodology to estimate deceleration events from raw CV trajectory data at varying thresholds that can be scaled to any CV. The estimated deceleration events and crash incident records around 629 interstate exits in Indiana were analyzed for a three-month period from March 1-May 31, 2023. Nearly 20 million estimated deceleration events and 4800 crash records were spatially joined to a 2-mile search radius around each exit ramp. Results showed that deceleration events between -0.5 g and -0.4 g had the highest correlation with an R<sup>2</sup> of 0.69. This study also identifies the top 20 interstate exit locations with highest deceleration events. The framework presented in this study enables agencies and transportation professionals to perform safety evaluations on raw trajectory data without the need to integrate external data sources.展开更多
Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the sele...Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the selected thresholds, detector lengths, and vehicle arrival patterns. Connected vehicle (CV) trajectory data can more definitively show when a vehicle split fails by evaluating the number of stops it experiences as it approaches an intersection, but it has limited market penetration. This paper compares cycle-by-cycle SF estimations from both high-resolution controller event data and CV trajectory data, and evaluates the effect of data aggregation on SF agreement between the two techniques. Results indicate that, in general, split failure events identified from CV data are likely to also be captured from high-resolution data, but split failure events identified from high-resolution data are less likely to be captured from CV data. This is due to the CV market penetration rate (MPR) of ~5% being too low to capture representative data for every controller cycle. However, data aggregation can increase the ratio in which CV data captures split failure events. For example, day-of-week data aggregation increased the percentage of split failures identified with high-resolution data that were also captured with CV data from 35% to 56%. It is recommended that aggregated CV data be used to estimate SF as it provides conservative and actionable results without the limitations of intersection and detector configuration. As the CV MPR increases, the accuracy of CV-based SF estimation will also improve.展开更多
Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper pre...Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper presents several tools using CV data to evaluate traffic progression quality along a signalized corridor. These include both performance measures for high-level analysis as well as visualizations to examine details of the coordinated operation. With the use of CV data, it is possible to assess not only the movement of traffic on the corridor but also to consider its origin-destination (O-D) path through the corridor. Results for the real-world operation of an eight-intersection signalized arterial are presented. A series of high-level performance measures are used to evaluate overall performance by time of day, with differing results by metric. Next, the details of the operation are examined with the use of two visualization tools: a cyclic time-space diagram (TSD) and an empirical platoon progression diagram (PPD). Comparing flow visualizations developed with different included O-D paths reveals several features, such as the presence of secondary and tertiary platoons on certain sections that cannot be seen when only end-to-end journeys are included. In addition, speed heat maps are generated, providing both speed performance along the corridor and locations and the extent of the queue. The proposed visualization tools portray the corridor’s performance holistically instead of combining individual signal performance metrics. The techniques exhibited in this study are compelling for identifying locations where engineering solutions such as access management or timing plan change are required. The recent progress in infrastructure-free sensing technology has significantly increased the scope of CV data-based traffic management systems, enhancing the significance of this study. The study demonstrates the utility of CV trajectory data for obtaining high-level details of the corridor performance as well as drilling down into the minute specifics.展开更多
In the model of the vehicle recognition algorithm implemented by the convolutional neural network,the model needs to compute and store a lot of parameters.Too many parameters occupy a lot of computational resources ma...In the model of the vehicle recognition algorithm implemented by the convolutional neural network,the model needs to compute and store a lot of parameters.Too many parameters occupy a lot of computational resources making it difficult to run on computers with poor performance.Therefore,obtaining more efficient feature information of target image or video with better accuracy on computers with limited arithmetic power becomes the main goal of this research.In this paper,a lightweight densely connected,and deeply separable convolutional network(DCDSNet)algorithmis proposed to achieve this goal.Visual Geometry Group(VGG)model is improved by utilizing the convolution instead of the fully connected module,the deeply separable convolution module,and the densely connected network module,with the first two modules reducing the parameters and the third module allowing the algorithm to have more features in a limited number of parameters.The algorithm achieves better results in the mine vehicle recognition dataset.Experiments show that the recognition accuracy is improved by 4.41% compared to VGG19 and the amount of parameters is reduced by 71% compared to VGG19.展开更多
Ensuring adequate access to truck parking is critical to the safe and efficient movement of freight traffic. There are strict federal guidelines for commercial truck driver rest periods. Rest areas and private truck s...Ensuring adequate access to truck parking is critical to the safe and efficient movement of freight traffic. There are strict federal guidelines for commercial truck driver rest periods. Rest areas and private truck stops are the only places for the trucks to stop legally and safely. In locations without sufficient parking areas, trucks often park on interstate ramps, which create safety risks for other interstate motorists. Historically, agencies have employed costly and time intensive manual counting methods, camera surveillance, and driver surveys to assess truck parking. Connected truck data, available in near real-time, offers an efficient alternative to practitioners to assess truck parking patterns and identify areas where there may be insufficient safe parking spaces. This paper presents a case study of interstate I-70 in east central Indiana and documents the observed spatiotemporal impacts of a rest area closure on truck parking on nearby interstate ramps. Results showed that there was a 28% increase in parking on ramps during the rest area closure. Analysis also found that ramps closest to the rest area were most impacted by the closure, seeing a rise in truck parking sessions as high as 2.7 times. Parking duration on the ramps during rest area closure also increased drastically. Although it was expected that this would result in increased parking by trucks on adjacent ramps, this before, during, after scenario provided an ideal scenario to evaluate the robustness of these techniques to assess changing parking characteristics of long-haul commercial trucks. The data analytics and visualization tools presented in this study are scalable nationwide and will aid stakeholders in informed data-driven decision making when allocating resources towards improving the nations commercial vehicle parking infrastructure.展开更多
We develop a Kalman filter for predicting traffic flow at urban arterials based on data obtained from con-nected vehicles. The proposed algorithm is computationally efficient and offers a real-time prediction since it...We develop a Kalman filter for predicting traffic flow at urban arterials based on data obtained from con-nected vehicles. The proposed algorithm is computationally efficient and offers a real-time prediction since it invokes the connected vehicle data just before the prediction period. Moreover, it can predict the traffic flow for various pene-tration rates of connected vehicles (the ratio of the number of connected vehicles to the total number of vehicles). At first, the Kalman filter equations are calibrated using data derived from Vissim traffic simulator for different penetra-tion rates, different fluctuating arrival rates of vehicles and various signal settings. Then the filter is evaluated for a variety of traffic scenarios generated in Vissim simulator. We evaluate the performance of the algorithm for different penetration rates under several traffic situations using some statistical measures. Although many of the previous pre-diction methods depend highly on data from fixed sensors (i.e., loop detectors and video cameras), which are associ-ated with huge installation and maintenance costs, this study provides a low-cost mean for short-term flow prediction only based on the connected vehicle data.展开更多
Planning and decision-making technology at intersections is a comprehensive research problem in intelligent transportation systems due to the uncertainties caused by a variety of traffic participants.As wireless commu...Planning and decision-making technology at intersections is a comprehensive research problem in intelligent transportation systems due to the uncertainties caused by a variety of traffic participants.As wireless communication advances,vehicle infrastructure integrated algorithms designed for intersection planning and decision-making have received increasing attention.In this paper,the recent studies on the planning and decision-making technologies at intersections are primarily overviewed.The general planning and decision-making approaches are presented,which include graph-based approach,prediction base approach,optimization-based approach and machine learning based approach.Since connected autonomous vehicles(CAVs)is the future direction for the automated driving area,we summarized the evolving planning and decision-making methods based on vehicle infrastructure cooperative technologies.Both four-way signalized and unsignalized intersection(s)are investigated under purely automated driving traffic and mixed traffic.The study benefit from current strategies,protocols,and simulation tools to help researchers identify the presented approaches’challenges and determine the research gaps,and several remaining possible research problems that need to be solved in the future.展开更多
基金the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.
基金This work was financially supported by the National Key Research and Development Program of China(2022YFB3103200).
文摘With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security.
基金supported by the National Natural Science Foundation of China(Grant No.62072031)the Applied Basic Research Foundation of Yunnan Province(Grant No.2019FD071)the Yunnan Scientific Research Foundation Project(Grant 2019J0187).
文摘With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points(NCPs).Considering the amount of task data and the idle resources of NCPs,a computing resource scheduling model for NCPs is established.Taking the heterogeneous task execution delay threshold as a constraint,the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs.The proposed problem is proven to be NP-hard by using the method of reduction to a 0-1 knapsack problem.A many-to-many matching algorithm based on resource preferences is proposed.The algorithm first establishes the mutual preference lists based on the adaptability of the task requirements and the resources provided by NCPs.This enables the filtering out of un-schedulable NCPs in the initial stage of matching,reducing the solution space dimension.To solve the matching problem between ICVs and NCPs,a new manyto-many matching algorithm is proposed to obtain a unique and stable optimal matching result.The simulation results demonstrate that the proposed scheme can improve the resource utilization of NCPs by an average of 9.6%compared to the reference scheme,and the total performance can be improved by up to 15.9%.
文摘The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connected vehicle data, enhanced weather data, and fleet telematics, have been integrated into INDOT winter operations activities. The objective of this study was to use these new data sources to conduct a systematic evaluation of the robustness of the MDSS forecasts. During the 2023-2024 winter season, 26 unique MDSS forecast data attributes were collected at 0, 1, 3, 6, 12 and 23-hour intervals from the observed storm time for 6 roadway segments during 13 individual storms. In total, over 888,000 MDSS data points were archived for this evaluation. This study developed novel visualizations to compare MDSS forecasts to multiple other independent data sources, including connected vehicle data, National Oceanic and Atmospheric Administration (NOAA) weather data, road friction data and snowplow telematics. Three Indiana storms, with varying characteristics and severity, were analyzed in detailed case studies. Those storms occurred on January 6th, 2024, January 13th, 2024 and February 16th, 2024. Incorporating these visualizations into winter weather after-action reports increases the robustness of post-storm performance analysis and allows road weather stakeholders to better understand the capabilities of MDSS. The results of this analysis will provide a framework for future MDSS evaluations and implementations as well as training tools for winter operation stakeholders in Indiana and beyond.
文摘In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network technology,effectively reduces carbon emissions in the transportation sector,improves energy utilization efficiency,and contributes to the green transportation system through intelligent transportation management and collaborative work between vehicles,making significant contributions.This article aims to explore the development of intelligent network-connected new energy vehicle technology and applications under the dual-carbon strategy and lay the foundation for the future development direction of the automotive industry.
基金supported in part by Australian Research Council Discovery Early Career Researcher Award(DE210100273)。
文摘Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.
基金Supported by National Key R&D Program of China (Grant No.2021YFB2402002)Beijing Natural Science Foundation of China (Grant No.L223013)。
文摘The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data.
基金China Tele-com Research Institute Project(Grants No.HQBYG2200147GGN00)National Key R&D Program of China(2020YFB1807600)National Natural Science Foundation of China(NSFC)(Grant No.62022020).
文摘Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicle(V2V)technology is difficult to break through the sensing blind area and ensure reliable sensing information.To overcome these problems,considering infrastructures as a means to extend the sensing range is feasible based on the integrated sensing and communication(ISAC)technology.The mmWave base station(mmBS)transmits multiple beams consisting of communication beams and sensing beams.The sensing beams are responsible for sensing objects within the CAVs blind area,while the communication beams are responsible for transmitting the sensed information to the CAVs.To reduce the impact of inter-beam interference,a joint multiple beamwidth and power allocation(JMBPA)algorithm is proposed.By maximizing the communication transmission rate under the sensing constraints.The proposed non-convex optimization problem is transformed into a standard difference of two convex functions(D.C.)problem.Finally,the superiority of the lutions.The average transmission rate of communication beams remains over 3.4 Gbps,showcasing a significant improvement compared to other algorithms.Moreover,the satisfaction of sensing services remains steady.
基金sponsored by the Zhejiang Province Science and Technology Major Project of China(No.2021C01011)the National Natural Science Foundation of China(NSFC)(No.52172349)the China Scholarship Council(CSC).
文摘Connected vehicle(CV)is regarded as a typical feature of the future road transportation system.One core benefit of promoting CV is to improve traffic safety,and to achieve that,accurate driving risk assessment under Vehicle-to-Vehicle(V2V)communications is critical.There are two main differences concluded by comparing driving risk assessment under the CV environment with traditional ones:(1)the CV environment provides high-resolution and multi-dimensional data,e.g.,vehicle trajectory data,(2)Rare existing studies can comprehensively address the heterogeneity of the vehicle operating environment,e.g.,the multiple interacting objects and the time-series variability.Hence,this study proposes a driving risk assessment framework under the CV environment.Specifically,first,a set of time-series top views was proposed to describe the CV environment data,expressing the detailed information on the vehicles surrounding the subject vehicle.Then,a hybrid CNN-LSTM model was established with the CNN component extracting the spatial interaction with multiple interacting vehicles and the LSTM component solving the time-series variability of the driving environment.It is proved that this model can reach an AUC of 0.997,outperforming the existing machine learning algorithms.This study contributes to the improvement of driving risk assessment under the CV environment.
基金supported in part by National Key R&D Program of China (No.2020YFB1807802)National Natural Science Foundation of China (Nos.61971148,U22A2054)。
文摘Digital twin is an essential enabling technology for 6G connected vehicles.Through highfidelity mobility simulation,digital twin is expected to make accurate prediction about the vehicle trajectory,and then support intelligent applications such as safety monitoring and self-driving for connected vehicles.However,it is observed that even if a digital twin model is perfectly derived,it might still fail to predict the trajectory due to tiny measurement noise or delay in the initial vehicle locations.This paper aims at investigating the sources of unpredictability of digital twin.Take the car-following behaviors in connected vehicles for case study.The theoretical analysis and experimental results indicate that the predictability of digital twin naturally depends on its system complexity.Once a system enters a complex pattern,its longterm states are unpredictable.Furthermore,our study discloses that the complexity is determined,on the one hand,by the intrinsic factors of the target physical system such as the driver’s response sensitivity and delay,and on the other hand,by the crucial parameters of the digital twin system such as the sampling interval and twining latency.
基金Project supported by the National Key Research and Development Project of China(Grant No.2018YFE0204300)the Beijing Municipal Science&Technology Commission(Grant No.Z211100004221008)the National Natural Science Foundation of China(Grant No.U1964206).
文摘As a form of a future traffic system,a connected and automated vehicle(CAV)platoon is a typical nonlinear physical system.CAVs can communicate with each other and exchange information.However,communication failures can change the platoon system status.To characterize this change,a dynamic topology-based car-following model and its generalized form are proposed in this work.Then,a stability analysis method is explored.Finally,taking the dynamic cooperative intelligent driver model(DC-IDM)for example,a series of numerical simulations is conducted to analyze the platoon stability in different communication topology scenarios.The results show that the communication failures reduce the stability,but information from vehicles that are farther ahead and the use of a larger desired time headway can improve stability.Moreover,the critical ratio of communication failures required to ensure stability for different driving parameters is studied in this work.
基金the National Natural Science Foundation of China(Grant Nos.71931002 and 72288101)。
文摘This paper investigates the traffic flow of connected and automated vehicles(CAVs)inducing by a moving bottleneck on a two-lane highway.A heuristic rules-based algorithm(HRA)has been used to control the traffic flow upstream of the moving bottleneck.In the HRA,some CAVs in the control zone are mapped onto the neighboring lane as virtual ones.To improve the driving comfort,the command acceleration caused by virtual vehicle is restricted.Comparing with the benchmark in which the CAVs change lane as soon as the lane changing condition is met,the HRA significantly improves the traffic flow:the overtaking throughput as well as the outflow rate increases,the travel delay and the fuel consumption decrease,the comfort level could also be improved.
基金Project supported in part by the Fundamental Research Funds for the Central Universities (Grant No.2021JBZ107)the National Natural Science Foundation of China (Grant Nos.72288101 and 71931002)。
文摘This paper investigates traffic flow of connected and automated vehicles at lane drop on two-lane highway. We evaluate and compare performance of an optimization-based control algorithm(OCA) with that of a heuristic rules-based algorithm(HRA). In the OCA, the average speed of each vehicle is maximized. In the HRA, virtual vehicle and restriction of the command acceleration caused by the virtual vehicle are introduced. It is found that(i) capacity under the HRA(denoted as C_(H)) is smaller than capacity under the OCA;(ii) the travel delay is always smaller under the OCA, but driving is always much more comfortable under the HRA;(iii) when the inflow rate is smaller than C_(H), the HRA outperforms the OCA with respect to the fuel consumption and the monetary cost;(iv) when the inflow rate is larger than C_(H), the HRA initially performs better with respect to the fuel consumption and the monetary cost, but the OCA would become better after certain time. The spatiotemporal pattern and speed profile of traffic flow are presented, which explains the reason underlying the different performance. The study is expected to help for better understanding of the two different types of algorithm.
文摘Historical roadway safety analyses have used labor and time-intensive crash data collection procedures. However, crash reporting is often delayed and crash locations are reported with varying levels of spatial accuracy and detail. Recent advances in connected vehicle (CV) data provide an opportunity for stakeholders to proactively identify areas of safety concerns in near-real time with high spatial precision. Public and private sector stakeholders including automotive original equipment manufacturers (OEM) and insurance providers may independently define acceleration thresholds for reporting unsafe driver behavior. Although some OEMs have provided fixed threshold hard-braking event data for a number of years, this varies by OEM and there is no published literature on the best thresholds to use for identifying emerging safety issues. This research proposes a methodology to estimate deceleration events from raw CV trajectory data at varying thresholds that can be scaled to any CV. The estimated deceleration events and crash incident records around 629 interstate exits in Indiana were analyzed for a three-month period from March 1-May 31, 2023. Nearly 20 million estimated deceleration events and 4800 crash records were spatially joined to a 2-mile search radius around each exit ramp. Results showed that deceleration events between -0.5 g and -0.4 g had the highest correlation with an R<sup>2</sup> of 0.69. This study also identifies the top 20 interstate exit locations with highest deceleration events. The framework presented in this study enables agencies and transportation professionals to perform safety evaluations on raw trajectory data without the need to integrate external data sources.
文摘Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the selected thresholds, detector lengths, and vehicle arrival patterns. Connected vehicle (CV) trajectory data can more definitively show when a vehicle split fails by evaluating the number of stops it experiences as it approaches an intersection, but it has limited market penetration. This paper compares cycle-by-cycle SF estimations from both high-resolution controller event data and CV trajectory data, and evaluates the effect of data aggregation on SF agreement between the two techniques. Results indicate that, in general, split failure events identified from CV data are likely to also be captured from high-resolution data, but split failure events identified from high-resolution data are less likely to be captured from CV data. This is due to the CV market penetration rate (MPR) of ~5% being too low to capture representative data for every controller cycle. However, data aggregation can increase the ratio in which CV data captures split failure events. For example, day-of-week data aggregation increased the percentage of split failures identified with high-resolution data that were also captured with CV data from 35% to 56%. It is recommended that aggregated CV data be used to estimate SF as it provides conservative and actionable results without the limitations of intersection and detector configuration. As the CV MPR increases, the accuracy of CV-based SF estimation will also improve.
文摘Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper presents several tools using CV data to evaluate traffic progression quality along a signalized corridor. These include both performance measures for high-level analysis as well as visualizations to examine details of the coordinated operation. With the use of CV data, it is possible to assess not only the movement of traffic on the corridor but also to consider its origin-destination (O-D) path through the corridor. Results for the real-world operation of an eight-intersection signalized arterial are presented. A series of high-level performance measures are used to evaluate overall performance by time of day, with differing results by metric. Next, the details of the operation are examined with the use of two visualization tools: a cyclic time-space diagram (TSD) and an empirical platoon progression diagram (PPD). Comparing flow visualizations developed with different included O-D paths reveals several features, such as the presence of secondary and tertiary platoons on certain sections that cannot be seen when only end-to-end journeys are included. In addition, speed heat maps are generated, providing both speed performance along the corridor and locations and the extent of the queue. The proposed visualization tools portray the corridor’s performance holistically instead of combining individual signal performance metrics. The techniques exhibited in this study are compelling for identifying locations where engineering solutions such as access management or timing plan change are required. The recent progress in infrastructure-free sensing technology has significantly increased the scope of CV data-based traffic management systems, enhancing the significance of this study. The study demonstrates the utility of CV trajectory data for obtaining high-level details of the corridor performance as well as drilling down into the minute specifics.
基金supported by the open project of National Local Joint Engineering Research Center for Agro-Ecological Big Data Analysis and Application Technology,“Adaptive Agricultural Machinery Motion Detection and Recognition in Natural Scenes”,AE202210By the school-level key discipline of Suzhou University in China with No.2019xjzdxk12022 Anhui Province College Research Program Project of the Suzhou Vocational College of Civil Aviation,No.2022AH053155.
文摘In the model of the vehicle recognition algorithm implemented by the convolutional neural network,the model needs to compute and store a lot of parameters.Too many parameters occupy a lot of computational resources making it difficult to run on computers with poor performance.Therefore,obtaining more efficient feature information of target image or video with better accuracy on computers with limited arithmetic power becomes the main goal of this research.In this paper,a lightweight densely connected,and deeply separable convolutional network(DCDSNet)algorithmis proposed to achieve this goal.Visual Geometry Group(VGG)model is improved by utilizing the convolution instead of the fully connected module,the deeply separable convolution module,and the densely connected network module,with the first two modules reducing the parameters and the third module allowing the algorithm to have more features in a limited number of parameters.The algorithm achieves better results in the mine vehicle recognition dataset.Experiments show that the recognition accuracy is improved by 4.41% compared to VGG19 and the amount of parameters is reduced by 71% compared to VGG19.
文摘Ensuring adequate access to truck parking is critical to the safe and efficient movement of freight traffic. There are strict federal guidelines for commercial truck driver rest periods. Rest areas and private truck stops are the only places for the trucks to stop legally and safely. In locations without sufficient parking areas, trucks often park on interstate ramps, which create safety risks for other interstate motorists. Historically, agencies have employed costly and time intensive manual counting methods, camera surveillance, and driver surveys to assess truck parking. Connected truck data, available in near real-time, offers an efficient alternative to practitioners to assess truck parking patterns and identify areas where there may be insufficient safe parking spaces. This paper presents a case study of interstate I-70 in east central Indiana and documents the observed spatiotemporal impacts of a rest area closure on truck parking on nearby interstate ramps. Results showed that there was a 28% increase in parking on ramps during the rest area closure. Analysis also found that ramps closest to the rest area were most impacted by the closure, seeing a rise in truck parking sessions as high as 2.7 times. Parking duration on the ramps during rest area closure also increased drastically. Although it was expected that this would result in increased parking by trucks on adjacent ramps, this before, during, after scenario provided an ideal scenario to evaluate the robustness of these techniques to assess changing parking characteristics of long-haul commercial trucks. The data analytics and visualization tools presented in this study are scalable nationwide and will aid stakeholders in informed data-driven decision making when allocating resources towards improving the nations commercial vehicle parking infrastructure.
基金sponsored by the Australian Integrated Multimodal EcoSystem (AIMES), https://industry.eng. unimelb.edu.au/aimes
文摘We develop a Kalman filter for predicting traffic flow at urban arterials based on data obtained from con-nected vehicles. The proposed algorithm is computationally efficient and offers a real-time prediction since it invokes the connected vehicle data just before the prediction period. Moreover, it can predict the traffic flow for various pene-tration rates of connected vehicles (the ratio of the number of connected vehicles to the total number of vehicles). At first, the Kalman filter equations are calibrated using data derived from Vissim traffic simulator for different penetra-tion rates, different fluctuating arrival rates of vehicles and various signal settings. Then the filter is evaluated for a variety of traffic scenarios generated in Vissim simulator. We evaluate the performance of the algorithm for different penetration rates under several traffic situations using some statistical measures. Although many of the previous pre-diction methods depend highly on data from fixed sensors (i.e., loop detectors and video cameras), which are associ-ated with huge installation and maintenance costs, this study provides a low-cost mean for short-term flow prediction only based on the connected vehicle data.
文摘Planning and decision-making technology at intersections is a comprehensive research problem in intelligent transportation systems due to the uncertainties caused by a variety of traffic participants.As wireless communication advances,vehicle infrastructure integrated algorithms designed for intersection planning and decision-making have received increasing attention.In this paper,the recent studies on the planning and decision-making technologies at intersections are primarily overviewed.The general planning and decision-making approaches are presented,which include graph-based approach,prediction base approach,optimization-based approach and machine learning based approach.Since connected autonomous vehicles(CAVs)is the future direction for the automated driving area,we summarized the evolving planning and decision-making methods based on vehicle infrastructure cooperative technologies.Both four-way signalized and unsignalized intersection(s)are investigated under purely automated driving traffic and mixed traffic.The study benefit from current strategies,protocols,and simulation tools to help researchers identify the presented approaches’challenges and determine the research gaps,and several remaining possible research problems that need to be solved in the future.