An improved method based on the Tikhonov regularization principle and the precisely known reference station coordinate is proposed to design the regularized matrix. The ill-conditioning of the normal matrix can be imp...An improved method based on the Tikhonov regularization principle and the precisely known reference station coordinate is proposed to design the regularized matrix. The ill-conditioning of the normal matrix can be improved by the regularized matrix. The relative floating ambiguity can be computed only by using the data of several epochs. Combined with the LAMBDA method, the new approach can correctly and quickly fix the integer ambiguity and the success rate is 100% in experiments. Through using measured data sets from four mediumlong baselines, the new method can obtain exact ambiguities only by the Ll-frequency data of three epochs. Compared with the existing methods, the improved method can solve the ambiguities of the medium-long baseline GPS network RTK only using L1-frequency GPS data.展开更多
The integer least squares(ILS)estimation is commonly used for carrier phase ambiguity resolution(AR).More recently,the best integer equivariant(BIE)estimation has also attracted an attention for complex application sc...The integer least squares(ILS)estimation is commonly used for carrier phase ambiguity resolution(AR).More recently,the best integer equivariant(BIE)estimation has also attracted an attention for complex application scenarios,which exhibits higher reliability by a weighted fusion of integer candidates.However,traditional BIE estimation with Gaussian distribution(GBIE)faces challenges in fully utilizing the advantages of BIE for urban low-cost positioning,mainly due to the presence of outliers and unmodeled errors.To this end,an improved BIE estimation method with Laplacian distribution(LBIE)is proposed,and several key issues are discussed,including the weight function of LBIE,determination of the candidates included based on the OIA test,and derivation of the variance of LBIE solutions for reliability evaluation.The results show that the proposed LBIE method has the positioning accuracy similar to the BIE using multivariate t-distribution(TBIE),and significantly outperforms the ILS-PAR and GBIE methods.In an urban expressway test with a Huawei Mate40 smartphone,the LBIE method has positioning errors of less than 0.5 m in three directions and obtains over 50%improvements compared to the ILS-PAR and GBIE methods.In an urban canyon test with a low-cost receiver STA8100 produced by STMicroelectronics,the positioning accuracy of LBIE in three directions is 0.112 m,0.107 m,and 0.252 m,respectively,with improvements of 17.6%,27.2%,and 26.1%compared to GBIE,and 23.3%,28.2%,and 30.6%compared to ILS-PAR.Moreover,its computational time increases by 30–40%compared to ILS-PAR and is approximately half of that using TBIE.展开更多
Integer Ambiguity Resolution(IAR)can significantly improve the accuracy of GNSS Precise Orbit Determination(POD).Traditionally,the IAR in POD is achieved at the Double Differenced(DD)level.In this contribution,we deve...Integer Ambiguity Resolution(IAR)can significantly improve the accuracy of GNSS Precise Orbit Determination(POD).Traditionally,the IAR in POD is achieved at the Double Differenced(DD)level.In this contribution,we develop an Un-Differenced(UD)IAR method for Global Positioning System(GPS)+BeiDou Navigation Satellite System(BDS)+Galileo navigation satellite system(Galileo)+Global'naya Navigatsionnaya Sputnikovaya Sistema(GLONASS)quad-system POD by calibrating UD ambiguities in the raw carrier phase and generating the so-called carrier range.Based on this method,we generate the UD ambiguity-fixed orbit and clock products for the Wuhan Innovation Application Center(IAC)of the International GNSS Monitoring and Assessment System(iGMAS).One-year observations in 2020 from 150 stations are employed to investigate performance of orbit and clock products.Notably,the UD Ambiguity Resolution(AR)yields more resolved integer ambiguities than the traditional DD AR,scaling up to 9%,attributable to its avoidance of station baseline formation.Benefiting from the removal of ambiguity parameters,the computational efficiency of parameter estimation undergoes a substantial 70%improvement.Compared with the float solution,the orbit consistencies of UD AR solution achieve the accuracy of 1.9,5.2,2.8,2.1,and 2.7 cm for GPS,BeiDou-2 Navigation Satellite System(BDS-2),BeiDou-3 Navigation Satellite System(BDS-3),Galileo,and GLONASS satellites respectively,reflecting enhancements of 40%,24%,54%,34%,and 42%.Moreover,the standard deviations of Satellite Laser Ranging(SLR)residuals are spanning 2.5–3.5 cm,underscoring a comparable accuracy to the DD AR solution,with discrepancies below 5%.A notable advantage of UD AR lies in its capability to produce the Integer Recovered Clock(IRC),facilitating Precise Point Positioning(PPP)AR without requiring additional Uncalibrated Phase Delay(UPD)products.To assess the performance of quad-system kinematic PPP based on IRC,a network comprising 120 stations is utilized.In comparison to the float solution,the IRC-based PPP AR accelerates convergence time by 31%and enhance positioning accuracy in the east component by 54%.展开更多
文摘An improved method based on the Tikhonov regularization principle and the precisely known reference station coordinate is proposed to design the regularized matrix. The ill-conditioning of the normal matrix can be improved by the regularized matrix. The relative floating ambiguity can be computed only by using the data of several epochs. Combined with the LAMBDA method, the new approach can correctly and quickly fix the integer ambiguity and the success rate is 100% in experiments. Through using measured data sets from four mediumlong baselines, the new method can obtain exact ambiguities only by the Ll-frequency data of three epochs. Compared with the existing methods, the improved method can solve the ambiguities of the medium-long baseline GPS network RTK only using L1-frequency GPS data.
基金funded by the National Key R&D Program of China(Grant No.2021YFC3000502)the National Natural Science Foundation of China(Grant No.42274034)+2 种基金the Major Program(JD)of Hubei Province(Grant No.2023BAA026)the Special Fund of Hubei Luojia Laboratory(Grant No.2201000038)the Research project of Chongqing Administration for Marktet Regulation,China(Grant No.CQSJKJ2022037).
文摘The integer least squares(ILS)estimation is commonly used for carrier phase ambiguity resolution(AR).More recently,the best integer equivariant(BIE)estimation has also attracted an attention for complex application scenarios,which exhibits higher reliability by a weighted fusion of integer candidates.However,traditional BIE estimation with Gaussian distribution(GBIE)faces challenges in fully utilizing the advantages of BIE for urban low-cost positioning,mainly due to the presence of outliers and unmodeled errors.To this end,an improved BIE estimation method with Laplacian distribution(LBIE)is proposed,and several key issues are discussed,including the weight function of LBIE,determination of the candidates included based on the OIA test,and derivation of the variance of LBIE solutions for reliability evaluation.The results show that the proposed LBIE method has the positioning accuracy similar to the BIE using multivariate t-distribution(TBIE),and significantly outperforms the ILS-PAR and GBIE methods.In an urban expressway test with a Huawei Mate40 smartphone,the LBIE method has positioning errors of less than 0.5 m in three directions and obtains over 50%improvements compared to the ILS-PAR and GBIE methods.In an urban canyon test with a low-cost receiver STA8100 produced by STMicroelectronics,the positioning accuracy of LBIE in three directions is 0.112 m,0.107 m,and 0.252 m,respectively,with improvements of 17.6%,27.2%,and 26.1%compared to GBIE,and 23.3%,28.2%,and 30.6%compared to ILS-PAR.Moreover,its computational time increases by 30–40%compared to ILS-PAR and is approximately half of that using TBIE.
基金supported by the National Natural Science Foundation of China(No.42204017,No.41974027,No.42304019)the special fund of Hubei Luojia Laboratory(220100006)+1 种基金the Sino-German mobility program(Grant No.M-0054),China Postdoctoral Science Foundation(2023M732687)the Fundamental Research Funds for the Central Universities(2042022kf1001).
文摘Integer Ambiguity Resolution(IAR)can significantly improve the accuracy of GNSS Precise Orbit Determination(POD).Traditionally,the IAR in POD is achieved at the Double Differenced(DD)level.In this contribution,we develop an Un-Differenced(UD)IAR method for Global Positioning System(GPS)+BeiDou Navigation Satellite System(BDS)+Galileo navigation satellite system(Galileo)+Global'naya Navigatsionnaya Sputnikovaya Sistema(GLONASS)quad-system POD by calibrating UD ambiguities in the raw carrier phase and generating the so-called carrier range.Based on this method,we generate the UD ambiguity-fixed orbit and clock products for the Wuhan Innovation Application Center(IAC)of the International GNSS Monitoring and Assessment System(iGMAS).One-year observations in 2020 from 150 stations are employed to investigate performance of orbit and clock products.Notably,the UD Ambiguity Resolution(AR)yields more resolved integer ambiguities than the traditional DD AR,scaling up to 9%,attributable to its avoidance of station baseline formation.Benefiting from the removal of ambiguity parameters,the computational efficiency of parameter estimation undergoes a substantial 70%improvement.Compared with the float solution,the orbit consistencies of UD AR solution achieve the accuracy of 1.9,5.2,2.8,2.1,and 2.7 cm for GPS,BeiDou-2 Navigation Satellite System(BDS-2),BeiDou-3 Navigation Satellite System(BDS-3),Galileo,and GLONASS satellites respectively,reflecting enhancements of 40%,24%,54%,34%,and 42%.Moreover,the standard deviations of Satellite Laser Ranging(SLR)residuals are spanning 2.5–3.5 cm,underscoring a comparable accuracy to the DD AR solution,with discrepancies below 5%.A notable advantage of UD AR lies in its capability to produce the Integer Recovered Clock(IRC),facilitating Precise Point Positioning(PPP)AR without requiring additional Uncalibrated Phase Delay(UPD)products.To assess the performance of quad-system kinematic PPP based on IRC,a network comprising 120 stations is utilized.In comparison to the float solution,the IRC-based PPP AR accelerates convergence time by 31%and enhance positioning accuracy in the east component by 54%.