A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and...A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.展开更多
An extension of the Lie algebra A_~n-1 has been proposed [Phys. Lett. A, 2003, [STHZ]310:19-24]. In this paper, the new Lie algebra was used to construct a new higher dimensional loop algebra [AKG~]. Based on the loo...An extension of the Lie algebra A_~n-1 has been proposed [Phys. Lett. A, 2003, [STHZ]310:19-24]. In this paper, the new Lie algebra was used to construct a new higher dimensional loop algebra [AKG~]. Based on the loop algebra [AKG~], the integrable couplings system of the NLS-MKdV equations hierarchy was obtained. As its reduction case, generalized nonlinear NLS-MKdV equations were obtained. The method proposed in this letter can be applied to other hierarchies of evolution equations.展开更多
By considering a new discrete isospectral eigenvalue problem, a hierarchy of lattice soliton equations of rational type are derived. It is shown that each equation in the resulting hierarchy is integrable in Liouville...By considering a new discrete isospectral eigenvalue problem, a hierarchy of lattice soliton equations of rational type are derived. It is shown that each equation in the resulting hierarchy is integrable in Liouville sense and possessing bi-Hamiltonian structure. Two types of semi-direct sums of Lie algebras are proposed, by using of which a practicable way to construct discrete integrable couplings is introduced. As applications, two kinds of discrete integrable couplings of the resulting system are worked out.展开更多
Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational ide...Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their ttamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations.展开更多
A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6...A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6613). Based on this method, we construct two integrable couplings of the soliton hierarchy with self-consistent sources by using the loop algebra sl(4). In this paper, we also point out that there are some errors in these references and we have corrected these errors and set up new formula. The method can be generalized to other soliton hierarchy with self-consistent sources.展开更多
Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, t...Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, the integrable couplings and the Hamiltonian structure of Giachetti-Johnson hierarchy and a new integrable system are obtained, respectively.展开更多
By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-f...By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.展开更多
A kind of integrable couplings of soliton equations hierarchy with self-consistent sources associated with sl(4) is presented by Yu. Based on this method, we construct a new integrable couplings of the classical-Bou...A kind of integrable couplings of soliton equations hierarchy with self-consistent sources associated with sl(4) is presented by Yu. Based on this method, we construct a new integrable couplings of the classical-Boussinesq hierarchy with self-consistent sources by using of loop algebra sl(4). In this paper, we also point out that there exist some errors in Yu's paper and have corrected these errors and set up new formula. The method can be generalized other soliton hierarchy with self-consistent sources.展开更多
Based on fractional isospectral problems and general bilinear forms, the gener-alized fractional trace identity is presented. Then, a new explicit Lie algebra is introduced for which the new fractional integrable coup...Based on fractional isospectral problems and general bilinear forms, the gener-alized fractional trace identity is presented. Then, a new explicit Lie algebra is introduced for which the new fractional integrable couplings of a fractional soliton hierarchy are derived from a fractional zero-curvature equation. Finally, we obtain the fractional Hamiltonian structures of the fractional integrable couplings of the soliton hierarchy.展开更多
A new isospectral problem is firstly presented, then we derive integrable system of soliton hierarchy. Also we obtain new integrable couplings of the generalized Kaup-Newell soliton equations hierarchy and its Hamilto...A new isospectral problem is firstly presented, then we derive integrable system of soliton hierarchy. Also we obtain new integrable couplings of the generalized Kaup-Newell soliton equations hierarchy and its Hamiltonian structures by using Tu scheme and the quadratic-form identity. The method can be generalized to other soliton hierarchy.展开更多
Based on a kind of non-semisimple Lie algebras, we establish a way to construct nonlinear continuous integrable couplings. Variational identities over the associated loop algebras are used to furnish Hamiltonian struc...Based on a kind of non-semisimple Lie algebras, we establish a way to construct nonlinear continuous integrable couplings. Variational identities over the associated loop algebras are used to furnish Hamiltonian structures of the resulting continuous couplings.As an illustrative example of the scheme is given nonlinear continuous integrable couplings of the Yang hierarchy.展开更多
We propose a systematic method for generalizing the integrable couplings of soliton eqhations hierarchy with self-consistent sources associated with s/(4). The JM equations hierarchy with self-consistent sources is ...We propose a systematic method for generalizing the integrable couplings of soliton eqhations hierarchy with self-consistent sources associated with s/(4). The JM equations hierarchy with self-consistent sources is derived. Furthermore, an integrable couplings of the JM soliton hierarchy with self-consistent sources is presented by using of the loop algebra sl(4).展开更多
Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplin...Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplings of the multi-component KN hierarchy are worked out respectively. Finally, Hamiltonian structures of obtained system are given by quadratic-form identity.展开更多
This paper derives new discrete integrable system based on discrete isospectral problem. It shows that the hierarchy is completely integrable in the Liouville sense and possesses bi-Hamiltonian structure. Finally, int...This paper derives new discrete integrable system based on discrete isospectral problem. It shows that the hierarchy is completely integrable in the Liouville sense and possesses bi-Hamiltonian structure. Finally, integrable couplings of the obtained system is given by means of semi-direct sums of Lie algebras.展开更多
A new and efficient way is presented for discrete integrable couplings with the help of two semi-direct sum Lie algebras. As its applications, two discrete integrable couplings associated with the lattice equation are...A new and efficient way is presented for discrete integrable couplings with the help of two semi-direct sum Lie algebras. As its applications, two discrete integrable couplings associated with the lattice equation are worked out. The approach can be used to study other discrete integrable couplings of the discrete hierarchies of solition equations.展开更多
To extend the study scopes of integrable couplings, the notion of double integrable couplings is proposed in the paper. The zero curvature equation appearing in the constructing method built in the paper consists of t...To extend the study scopes of integrable couplings, the notion of double integrable couplings is proposed in the paper. The zero curvature equation appearing in the constructing method built in the paper consists of the elements of a new loop algebra which is obtained by using perturbation method. Therefore, the approach given in the paper has extensive applicable values, that is, it applies to investigate a lot of double integrable couplings of the known integrable hierarchies of evolution equations. As for explicit applications of the method proposed in the paper, the double integrable couplings of the AKNS hierarchy and the KN hierarchy are worked out, respectively.展开更多
By means of the Lie algebra B 2,a new extended Lie algebra F is constructed.Based on the Lie algebras B 2 and F,the nonlinear Schro¨dinger-modified Korteweg de Vries(NLS-mKdV) hierarchy with self-consistent sou...By means of the Lie algebra B 2,a new extended Lie algebra F is constructed.Based on the Lie algebras B 2 and F,the nonlinear Schro¨dinger-modified Korteweg de Vries(NLS-mKdV) hierarchy with self-consistent sources as well as its nonlinear integrable couplings are derived.With the help of the variational identity,their Hamiltonian structures are generated.展开更多
A new 3M-dimensional Lie algebra X is constructed firstly. Then, the corresponding loop algebra X is produced, whose commutation operation defined by us is as simple and straightforward as that in the loop algebra A1....A new 3M-dimensional Lie algebra X is constructed firstly. Then, the corresponding loop algebra X is produced, whose commutation operation defined by us is as simple and straightforward as that in the loop algebra A1.It follows that a generalscheme for generating multi-component integrable hierarchy is proposed. By taking advantage of X, a new isospectral problem is established, and then well-known multi-component TC hierarchy is obtained. Finally,an expanding loop algebra FM of the loop algebra X is presented. Based on the FM, the multi-component integrable coupling system of the generalized multi-component TC hierarchy has been worked out. The method in this paper can be applied to other nonlinear evolution equations hierarchies. It is easy to find that we can construct any finite-dimensional Lie algebra by this approach.展开更多
In this paper, a new nonlinear integrable coupling system of the soliton hierarchy is presented. Prom the Lax pairs, the coupled KdV equations are constructed successfully. Based on the prolongation method of Wahlquis...In this paper, a new nonlinear integrable coupling system of the soliton hierarchy is presented. Prom the Lax pairs, the coupled KdV equations are constructed successfully. Based on the prolongation method of Wahlquist and Estabrook, we study the prolongation structure of the nonlinear integrable couplings of the KdV equation.展开更多
The natural gas(NG)reforming is currently one of the low-cost methods for hydrogen production.However,the mixture of H2 and CO_(2) in the produced gas inevitably includes CO_(2) and necessitates the costly CO_(2) sepa...The natural gas(NG)reforming is currently one of the low-cost methods for hydrogen production.However,the mixture of H2 and CO_(2) in the produced gas inevitably includes CO_(2) and necessitates the costly CO_(2) separation.In this work,a novel double chemical looping involving both combustion(CLC)and sorption-enhanced reforming(SE-CLR)was proposed towards the co-production of H2 and CO(CLC-SECLRHC)in two separated streams.CLC provides reactant CO_(2) and energy to feed SECLRHC,which generates hydrogen in a higher purity,as well as the calcium cycle to generate CO in a higher purity.Techno-economic assessment of the proposed system was conducted to evaluate its efficiency and economic competitiveness.Studies revealed that the optimal molar ratios of oxygen carrier(OC)/NG and steam/NG for reforming were recommended to be 1.7 and 1.0,respectively.The heat integration within CLC and SECLRHC units can be achieved by circulating hot OCs.The desired temperatures of fuel reactor(FR)and reforming reactor(RR)should be 850C and 600C,respectively.The heat coupling between CLC and SECLRHC units can be realized via a jacket-type reactor,and the NG split ratio for reforming and combustion was 0.53:0.47.Under the optimal conditions,the H2 purity,the H2 yield and the CH4 conversion efficiency were 98.76%,2.31 mol mol-1 and 97.96%,respectively.The carbon and hydrogen utilization efficiency respectively were 58.60% and 72.45%in terms of the total hydrogen in both steam and NG.The exergy efficiency of the overall process reached 70.28%.In terms of the conventional plant capacity(75 × 103 t y^(-1))and current raw materials price(2500$t^(-1)),the payback period can be 6.2 years and the IRR would be 11.5,demonstrating an economically feasible and risk resistant capability.展开更多
文摘A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.
文摘An extension of the Lie algebra A_~n-1 has been proposed [Phys. Lett. A, 2003, [STHZ]310:19-24]. In this paper, the new Lie algebra was used to construct a new higher dimensional loop algebra [AKG~]. Based on the loop algebra [AKG~], the integrable couplings system of the NLS-MKdV equations hierarchy was obtained. As its reduction case, generalized nonlinear NLS-MKdV equations were obtained. The method proposed in this letter can be applied to other hierarchies of evolution equations.
基金National Natural Science Foundation of China under Grant No.60572113the Natural Science Foundation of Shandong Province of China under Grant No.Q2006A04the Talents Foundation of Taishan College under Grant No.Y05-2-01
文摘By considering a new discrete isospectral eigenvalue problem, a hierarchy of lattice soliton equations of rational type are derived. It is shown that each equation in the resulting hierarchy is integrable in Liouville sense and possessing bi-Hamiltonian structure. Two types of semi-direct sums of Lie algebras are proposed, by using of which a practicable way to construct discrete integrable couplings is introduced. As applications, two kinds of discrete integrable couplings of the resulting system are worked out.
基金Supported by the Fundamental Research Funds of the Central University under Grant No. 2010LKS808the Natural Science Foundation of Shandong Province under Grant No. ZR2009AL021
文摘Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their ttamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations.
基金Project supported by the Natural Science Foundation of Shanghai (Grant No. 09ZR1410800)the Science Foundation of Key Laboratory of Mathematics Mechanization (Grant No. KLMM0806)+2 种基金the Shanghai Leading Academic Discipline Project (Grant No. J50101)the Key Disciplines of Shanghai Municipality (Grant No. S30104)the National Natural Science Foundation of China (Grant Nos. 61072147 and 11071159)
文摘A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6613). Based on this method, we construct two integrable couplings of the soliton hierarchy with self-consistent sources by using the loop algebra sl(4). In this paper, we also point out that there are some errors in these references and we have corrected these errors and set up new formula. The method can be generalized to other soliton hierarchy with self-consistent sources.
基金The project supported by National Natural Science Foundation of China under Grant No. 10471139
文摘Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, the integrable couplings and the Hamiltonian structure of Giachetti-Johnson hierarchy and a new integrable system are obtained, respectively.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101Key Disciplines of Shanghai Municipality (S30104)
文摘By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101by Key Disciplines of Shanghai Municipality (S30104)
文摘A kind of integrable couplings of soliton equations hierarchy with self-consistent sources associated with sl(4) is presented by Yu. Based on this method, we construct a new integrable couplings of the classical-Boussinesq hierarchy with self-consistent sources by using of loop algebra sl(4). In this paper, we also point out that there exist some errors in Yu's paper and have corrected these errors and set up new formula. The method can be generalized other soliton hierarchy with self-consistent sources.
基金supported by the National Natural Science Foundation of China(1127100861072147+1 种基金11071159)the First-Class Discipline of Universities in Shanghai and the Shanghai University Leading Academic Discipline Project(A13-0101-12-004)
文摘Based on fractional isospectral problems and general bilinear forms, the gener-alized fractional trace identity is presented. Then, a new explicit Lie algebra is introduced for which the new fractional integrable couplings of a fractional soliton hierarchy are derived from a fractional zero-curvature equation. Finally, we obtain the fractional Hamiltonian structures of the fractional integrable couplings of the soliton hierarchy.
基金Supported by the Natural Science Foundation of China under Grant Nos. 61072147, 11071159, and 10971031by the Natural Science Foundation of Shanghai and Zhejiang Province under Grant Nos. 09ZR1410800 and Y6100791+1 种基金the Shanghai Shuguang Tracking Project under Grant No. 08GG01the Shanghai Leading Academic Discipline Project under Grant No. J50101
文摘A new isospectral problem is firstly presented, then we derive integrable system of soliton hierarchy. Also we obtain new integrable couplings of the generalized Kaup-Newell soliton equations hierarchy and its Hamiltonian structures by using Tu scheme and the quadratic-form identity. The method can be generalized to other soliton hierarchy.
基金Foundation item: Supported by the Natural Science Foundation of China(11271008, 61072147, 11071159) Supported by the First-class Discipline of Universities in Shanghai Supported by the Shanghai University Leading Academic Discipline Project(A13-0101-12-004)
文摘Based on a kind of non-semisimple Lie algebras, we establish a way to construct nonlinear continuous integrable couplings. Variational identities over the associated loop algebras are used to furnish Hamiltonian structures of the resulting continuous couplings.As an illustrative example of the scheme is given nonlinear continuous integrable couplings of the Yang hierarchy.
基金Supported by the Research Work of Liaoning Provincial Development of Education under Grant No,2008670
文摘We propose a systematic method for generalizing the integrable couplings of soliton eqhations hierarchy with self-consistent sources associated with s/(4). The JM equations hierarchy with self-consistent sources is derived. Furthermore, an integrable couplings of the JM soliton hierarchy with self-consistent sources is presented by using of the loop algebra sl(4).
文摘Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplings of the multi-component KN hierarchy are worked out respectively. Finally, Hamiltonian structures of obtained system are given by quadratic-form identity.
文摘This paper derives new discrete integrable system based on discrete isospectral problem. It shows that the hierarchy is completely integrable in the Liouville sense and possesses bi-Hamiltonian structure. Finally, integrable couplings of the obtained system is given by means of semi-direct sums of Lie algebras.
文摘A new and efficient way is presented for discrete integrable couplings with the help of two semi-direct sum Lie algebras. As its applications, two discrete integrable couplings associated with the lattice equation are worked out. The approach can be used to study other discrete integrable couplings of the discrete hierarchies of solition equations.
基金Supported by the National Natural Science Foundation of China under Grant No.10971031
文摘To extend the study scopes of integrable couplings, the notion of double integrable couplings is proposed in the paper. The zero curvature equation appearing in the constructing method built in the paper consists of the elements of a new loop algebra which is obtained by using perturbation method. Therefore, the approach given in the paper has extensive applicable values, that is, it applies to investigate a lot of double integrable couplings of the known integrable hierarchies of evolution equations. As for explicit applications of the method proposed in the paper, the double integrable couplings of the AKNS hierarchy and the KN hierarchy are worked out, respectively.
基金Project supported by the Innovation Group Project of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q07-01)the Key Foundation of the National Natural Science Foundation of China (Grant No. 41030855)the Special Funding of Marine Science Study,State Ocean Administration of China (Grant No. 20090513-2)
文摘By means of the Lie algebra B 2,a new extended Lie algebra F is constructed.Based on the Lie algebras B 2 and F,the nonlinear Schro¨dinger-modified Korteweg de Vries(NLS-mKdV) hierarchy with self-consistent sources as well as its nonlinear integrable couplings are derived.With the help of the variational identity,their Hamiltonian structures are generated.
基金中国科学院资助项目,the Science Foundation of Liuhui Center of Tianjin University and Nankai University,辽宁省自然科学基金
文摘A new 3M-dimensional Lie algebra X is constructed firstly. Then, the corresponding loop algebra X is produced, whose commutation operation defined by us is as simple and straightforward as that in the loop algebra A1.It follows that a generalscheme for generating multi-component integrable hierarchy is proposed. By taking advantage of X, a new isospectral problem is established, and then well-known multi-component TC hierarchy is obtained. Finally,an expanding loop algebra FM of the loop algebra X is presented. Based on the FM, the multi-component integrable coupling system of the generalized multi-component TC hierarchy has been worked out. The method in this paper can be applied to other nonlinear evolution equations hierarchies. It is easy to find that we can construct any finite-dimensional Lie algebra by this approach.
基金Project supported by the Scientific Research Fundation of the Education Department of Liaoning Province,China(GrantNo.L2010513)the China Postdoctoral Science Foundation(Grant No.2011M500404)
文摘In this paper, a new nonlinear integrable coupling system of the soliton hierarchy is presented. Prom the Lax pairs, the coupled KdV equations are constructed successfully. Based on the prolongation method of Wahlquist and Estabrook, we study the prolongation structure of the nonlinear integrable couplings of the KdV equation.
基金supported by National Natural Science Foundation of China(U1810205)The authors would also like to thank the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20220003)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2021L002)for their support.
文摘The natural gas(NG)reforming is currently one of the low-cost methods for hydrogen production.However,the mixture of H2 and CO_(2) in the produced gas inevitably includes CO_(2) and necessitates the costly CO_(2) separation.In this work,a novel double chemical looping involving both combustion(CLC)and sorption-enhanced reforming(SE-CLR)was proposed towards the co-production of H2 and CO(CLC-SECLRHC)in two separated streams.CLC provides reactant CO_(2) and energy to feed SECLRHC,which generates hydrogen in a higher purity,as well as the calcium cycle to generate CO in a higher purity.Techno-economic assessment of the proposed system was conducted to evaluate its efficiency and economic competitiveness.Studies revealed that the optimal molar ratios of oxygen carrier(OC)/NG and steam/NG for reforming were recommended to be 1.7 and 1.0,respectively.The heat integration within CLC and SECLRHC units can be achieved by circulating hot OCs.The desired temperatures of fuel reactor(FR)and reforming reactor(RR)should be 850C and 600C,respectively.The heat coupling between CLC and SECLRHC units can be realized via a jacket-type reactor,and the NG split ratio for reforming and combustion was 0.53:0.47.Under the optimal conditions,the H2 purity,the H2 yield and the CH4 conversion efficiency were 98.76%,2.31 mol mol-1 and 97.96%,respectively.The carbon and hydrogen utilization efficiency respectively were 58.60% and 72.45%in terms of the total hydrogen in both steam and NG.The exergy efficiency of the overall process reached 70.28%.In terms of the conventional plant capacity(75 × 103 t y^(-1))and current raw materials price(2500$t^(-1)),the payback period can be 6.2 years and the IRR would be 11.5,demonstrating an economically feasible and risk resistant capability.