The performance of the so-called superconvergent quantum perturbation theory (Wenhua Hal et al2000 Phys. Rev. A 61 052105) is investigated for the case of the ground-state energy of the helium-like ions. The scaling...The performance of the so-called superconvergent quantum perturbation theory (Wenhua Hal et al2000 Phys. Rev. A 61 052105) is investigated for the case of the ground-state energy of the helium-like ions. The scaling transformation τ → τ/Z applied to the Hamiltonian of a two-electron atomic ion with a nuclear charge Z (in atomic units). Using the improved Rayleigh-SchrSdinger perturbation theory based on the integral equation to helium-like ions in the ground states and treating the electron correlations as perturbations, we have performed a third-order perturbation calculation and obtained the second-order corrected wavefunctions consisting of a few terms and third-order energy corrections. We find that third-order and higher-order energy corrections are improved with decreasing nuclear charge. This result means that the former is quadratically integrable and the latter is physically meaningful. The improved quantum perturbation theory fits the higher-order perturbation case. This work shows that it is a development on the quantum perturbation problem of helium-like systems.展开更多
In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomi...In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2].展开更多
In this paper, a reliable algorithm based on mixture of new integral transform and homotopy perturbation method is proposed to solve a nonlinear differential-difference equation arising in nanotechnology. Continuum hy...In this paper, a reliable algorithm based on mixture of new integral transform and homotopy perturbation method is proposed to solve a nonlinear differential-difference equation arising in nanotechnology. Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. The technique finds the solution without any discretization or restrictive assumptions and avoids the round-off errors. Comparison of the approximate solution with the exact one reveals that the method is very effective. It provides more realistic series solutions that converge very rapidly for nonlinear real physical problems.展开更多
This paper presents a study of nonlinear waves in shallow water.The Korteweg-de Vries(KdV)equa-tion has a canonical version based on oceanography theory,the shallow water waves in the oceans,and the internal ion-acous...This paper presents a study of nonlinear waves in shallow water.The Korteweg-de Vries(KdV)equa-tion has a canonical version based on oceanography theory,the shallow water waves in the oceans,and the internal ion-acoustic waves in plasma.Indeed,the main goal of this investigation is to employ a semi-analytical method based on the homotopy perturbation transform method(HPTM)to obtain the numerical findings of nonlinear dispersive and fifth order KdV models for investigating the behaviour of magneto-acoustic waves in plasma via fuzziness.This approach is connected with the fuzzy generalized integral transform and HPTM.Besides that,two novel results for fuzzy generalized integral transforma-tion concerning fuzzy partial gH-derivatives are presented.Several illustrative examples are illustrated to show the effectiveness and supremacy of the proposed method.Furthermore,2D and 3D simulations de-pict the comparison analysis between two fractional derivative operators(Caputo and Atangana-Baleanu fractional derivative operators in the Caputo sense)under generalized gH-differentiability.The projected method(GHPTM)demonstrates a diverse spectrum of applications for dealing with nonlinear wave equa-tions in scientific domains.The current work,as a novel use of GHPTM,demonstrates some key differ-ences from existing similar methods.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10575034)the Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics of China (Grant No T152504)the Foundation of the Education Committee of Hunan Province of China
文摘The performance of the so-called superconvergent quantum perturbation theory (Wenhua Hal et al2000 Phys. Rev. A 61 052105) is investigated for the case of the ground-state energy of the helium-like ions. The scaling transformation τ → τ/Z applied to the Hamiltonian of a two-electron atomic ion with a nuclear charge Z (in atomic units). Using the improved Rayleigh-SchrSdinger perturbation theory based on the integral equation to helium-like ions in the ground states and treating the electron correlations as perturbations, we have performed a third-order perturbation calculation and obtained the second-order corrected wavefunctions consisting of a few terms and third-order energy corrections. We find that third-order and higher-order energy corrections are improved with decreasing nuclear charge. This result means that the former is quadratically integrable and the latter is physically meaningful. The improved quantum perturbation theory fits the higher-order perturbation case. This work shows that it is a development on the quantum perturbation problem of helium-like systems.
文摘In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2].
文摘In this paper, a reliable algorithm based on mixture of new integral transform and homotopy perturbation method is proposed to solve a nonlinear differential-difference equation arising in nanotechnology. Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. The technique finds the solution without any discretization or restrictive assumptions and avoids the round-off errors. Comparison of the approximate solution with the exact one reveals that the method is very effective. It provides more realistic series solutions that converge very rapidly for nonlinear real physical problems.
文摘This paper presents a study of nonlinear waves in shallow water.The Korteweg-de Vries(KdV)equa-tion has a canonical version based on oceanography theory,the shallow water waves in the oceans,and the internal ion-acoustic waves in plasma.Indeed,the main goal of this investigation is to employ a semi-analytical method based on the homotopy perturbation transform method(HPTM)to obtain the numerical findings of nonlinear dispersive and fifth order KdV models for investigating the behaviour of magneto-acoustic waves in plasma via fuzziness.This approach is connected with the fuzzy generalized integral transform and HPTM.Besides that,two novel results for fuzzy generalized integral transforma-tion concerning fuzzy partial gH-derivatives are presented.Several illustrative examples are illustrated to show the effectiveness and supremacy of the proposed method.Furthermore,2D and 3D simulations de-pict the comparison analysis between two fractional derivative operators(Caputo and Atangana-Baleanu fractional derivative operators in the Caputo sense)under generalized gH-differentiability.The projected method(GHPTM)demonstrates a diverse spectrum of applications for dealing with nonlinear wave equa-tions in scientific domains.The current work,as a novel use of GHPTM,demonstrates some key differ-ences from existing similar methods.
基金Supported by the National Key Basic Research Program of China(2013CB733400)the National Natural Science Foundation of China(Grant Number:41471299)the Key Projects in the National Science and Technology Pillar Program(2012BAH28B03)