This paper deals with reducing differential equations of vibration problem of plates with concentrated masses, elastic supports and elastically mounted masses into eigenvalue problem of integral equations. By applying...This paper deals with reducing differential equations of vibration problem of plates with concentrated masses, elastic supports and elastically mounted masses into eigenvalue problem of integral equations. By applying the general function theory and the integral equation theory. the frequency equation is derived in terms of standard eigenvalue problem of a matrix with infinite order. So that, the natural frequencies and mode shapes can be determined. Convergence of this method has also been, discussed at the end of this paper.展开更多
The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and elemen...The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and element free Galerkin method(EFGM), and is a truly meshless method possessing wide prospects in engineering applications. The companion solution and all the other formulas required in the meshless local boundary integral equation for a thin plate were presented, in order to make this method apply to solve the thin plate problem.展开更多
The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By a...The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By applying Abel transformation the dual integral equations are reduced to Fredholm integral equation of the second kind which is solved numerically.展开更多
The quasi-Green's function method is used to solve the free vibration problem of clamped thin plates on the Winkler foundation. Quasi-Green's function is established by the fundamental solution and the boundary equa...The quasi-Green's function method is used to solve the free vibration problem of clamped thin plates on the Winkler foundation. Quasi-Green's function is established by the fundamental solution and the boundary equation of the problem. The function satisfies the homogeneous boundary condition of tile problem. The mode-shape differential equation of the free vibration problem of clamped thin plates on the Winkler foundation is reduced to the Fredholm integral equation of the second kind by Green's formula. The irregularity of the kernel of the integral equation is overcome by choosing a suitable form of the normalized boundary equation. The numerical results show the high accuracy of the proposed method.展开更多
Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical techniq...Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE.展开更多
A new numerical method-Green quasifunction is proposed. The idea of Green quasifunction method is clarified in detail by considering a vibration problem of simply-supported thin polygonic plates on Pasternak foundatio...A new numerical method-Green quasifunction is proposed. The idea of Green quasifunction method is clarified in detail by considering a vibration problem of simply-supported thin polygonic plates on Pasternak foundation. A Green quasifunction is established by using the fundamental solution and boundary equation of the problem. This function satisfies the homogeneous boundary condition of the problem. The mode shape differential equation of the vibration problem of simply-supported thin plates on Pasternak foundation is reduced to two simultaneous Fredholm integral equations of the second kind by Green formula. There are multiple choices for the normalized boundary equation. Based on a chosen normalized boundary equation, a new normalized boundary equation can be established such that the irregularity of the kernel of integral equations is overcome. Finally, natural frequency is obtained by the condition that there exists a nontrivial solution in the numerically discrete algebraic equations derived from the integral equations. Numerical results show high accuracy of the Green quasifunction method.展开更多
Two fundamental solutions for bending problem of Reissner's plates on twoparameter foundation are derived by means of Fouier integral transformation of generalized function in this paper.On the basis of virtual wo...Two fundamental solutions for bending problem of Reissner's plates on twoparameter foundation are derived by means of Fouier integral transformation of generalized function in this paper.On the basis of virtual work principles, three boundary integral equations which fit for arbitrary shapes, loads and boundary conditions of thick plates are presented according to Hu Haichang's theory about Reissner's plates. It provides the fundamental theories for the application of BEM. A numerical example is given for clamped, simply supported and free boundary conditions. The results obtained are satisfactory as compared with the analytical methods.展开更多
In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these t...In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these two plate-models for the simply-supported rectangular orthotropic plates. The well-known fundamental solutions of the isotrqpic plates are utlized for the spline integral equation analysis of anisotropic plates.Even with sparse meshes the satisfactory results can be obtained. The analysis of plates on two-parameter elastic foundation is so simple as the common case that only a few terms should be added to the formulas of fictitious loads.展开更多
In this paper, a fourth-order viscoelastic plate vibration equation is transformed into a set of two second-order differential equations by introducing an intermediate variable. A three-layer compact difference scheme...In this paper, a fourth-order viscoelastic plate vibration equation is transformed into a set of two second-order differential equations by introducing an intermediate variable. A three-layer compact difference scheme for the initial-boundary value problem of the viscoelastic plate vibration equation is established. Then the stability and convergence of the difference scheme are analyzed by the energy method, and the convergence order is <img src="Edit_0a250b60-7c3c-4caf-8013-5e302d6477ab.png" alt="" />. Finally, some numerical examples are given of which results verify the accuracy and validity of the scheme.展开更多
The Green quasifunction method is employed to solve the free vibration problem of clamped thin plates.A Green quasifunction is established by using the fundamental solution and boundary equation of the problem.This fu...The Green quasifunction method is employed to solve the free vibration problem of clamped thin plates.A Green quasifunction is established by using the fundamental solution and boundary equation of the problem.This function satisfies the homogeneous boundary condition of the problem.The mode shape differential equation of the free vibration problem of clamped thin plates is reduced to Fredholm integral equation of the second kind by Green formula.Irregularity of the kernel of integral equation is overcome by choosing a suitable form of the normalized boundary equation.Two examples demonstrate the validity of the present method.Comparison with both the series solution and ANSYS finite-element solution shows fine agreement.The present method is a novel and effective mathematical one.展开更多
In this study, integral operational methods are used to investigate the thermally induced transverse vibration of a thin elliptic annulus plate with elastic supports at both radial boundaries.The axisymmetric temperat...In this study, integral operational methods are used to investigate the thermally induced transverse vibration of a thin elliptic annulus plate with elastic supports at both radial boundaries.The axisymmetric temperature distribution is determined by the heat conduction differential equation and its corresponding boundary conditions by employing a unified integral transform technique by use of Mathieu functions and modified Mathieu functions. The solution of thermally induced vibration of the plate with both ends encased with elastic supports is obtained by employing an integral transform for double Laplace differential equation. The thermal moment is derived on the basis of temperature distribution, and its stresses are obtained based on resultant bending moments per unit width. The numerical calculations of the distributions of the transient temperature and its associated stress distributions are shown in the figures.展开更多
The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropi...The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropic saturated soils were transformed into a group of governing differential equations with 1-order by the technique of Fourier expanding with respect to azimuth, and the state equation is established by Hankel integral transform method, furthermore the transfer matrixes within layered media are derived based on the solutions of the state equation. Secondly, by the transfer matrixes, the general solutions of dynamic response for layered transversely isotropic saturated ground excited by an arbitrary harmonic force were established under the boundary conditions, drainage conditions on the surface of ground as well as the contact conditions. Thirdly, the problem was led to a pair of dual integral equations describing the mixed boundaryvalue problem which can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure easily. At the end of this paper, a numerical result concerning vertical and radical displacements both the surface of saturated ground and plate is evaluated.展开更多
A torsional static and free vibration analysis of the functionally graded nanotube(FGNT)composed of two materials varying continuously according to the power-law along the radial direction is performed using the bi-He...A torsional static and free vibration analysis of the functionally graded nanotube(FGNT)composed of two materials varying continuously according to the power-law along the radial direction is performed using the bi-Helmholtz kernel based stress-driven nonlocal integral model.The differential governing equation and boundary conditions are deduced on the basis of Hamilton’s principle,and the constitutive relationship is expressed as an integral equation with the bi-Helmholtz kernel.Several nominal variables are introduced to simplify the differential governing equation,integral constitutive equation,and boundary conditions.Rather than transforming the constitutive equation from integral to differential forms,the Laplace transformation is used directly to solve the integro-differential equations.The explicit expression for nominal torsional rotation and torque contains four unknown constants,which can be determined with the help of two boundary conditions and two extra constraints from the integral constitutive relation.A few benchmarked examples are solved to illustrate the nonlocal influence on the static torsion of a clamped-clamped(CC)FGNT under torsional constraints and a clamped-free(CF)FGNT under concentrated and uniformly distributed torques as well as the torsional free vibration of an FGNT under different boundary conditions.展开更多
Circular plates with radially varying thickness, stiffness, and density are widely used for the structural optimization in engineering. The axisymmetric flexural free vibration of such plates, governed by coupled diff...Circular plates with radially varying thickness, stiffness, and density are widely used for the structural optimization in engineering. The axisymmetric flexural free vibration of such plates, governed by coupled differential equations with variable coefficients by use of the Mindlin plate theory, is very difficult to be studied analytically. In this paper, a novel analytical method is proposed to reduce such governing equations for circular plates to a pair of uncoupled and easily solvable differential equations of the Sturm-Liouville type. There are two important parameters in the reduced equations. One describes the radial variations of the translational inertia and fiexural rigidity with the consideration of the effect of Poisson's ratio. The other reflects the comprehensive effect of the rotatory inertia and shear deformation. The Heun-type equations, recently well-known in physics, are introduced here to solve the flexural free vibration of circular plates analytically, and two basic differential formulae for the local Heun-type functions are discovered for the first time, which will be of great value in enriching the theory of Heun-type differential equations.展开更多
By using complex variable methods, the boundary value problem for biharmonic functions arisen from the theory of clamped elastic thin plate is shown to be equivalent to the first fundamental problem in plane elasticit...By using complex variable methods, the boundary value problem for biharmonic functions arisen from the theory of clamped elastic thin plate is shown to be equivalent to the first fundamental problem in plane elasticity which, as well-known, may be easily solved by reduction to a Fredholm integral equation. The case of circular plate is illustrated in detail, the solution of which is obtained in closed form.展开更多
The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi...The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi_harmonic operator and Laplace operator, applying the multiple reciprocity method(MRM), the MRM boundary integral equation for plate bending problem was constructed. It proves that the boundary integral equation derived from MRM is essentially identical to the conventional boundary integral equation. Hence the convergence analysis of MRM for plate bending problem can be obtained by the error estimation for the conventional boundary integral equation. In addition, this method can extend to the case of more series of the high_order fundamental solution sequences.展开更多
A meshless approach to analysis of arbitrary Kirechhoff plates bythe local boundary integral equation (LBIF) method is presented. Themethod combines the advantageous features of all the three meth- ods:the Galerkin fi...A meshless approach to analysis of arbitrary Kirechhoff plates bythe local boundary integral equation (LBIF) method is presented. Themethod combines the advantageous features of all the three meth- ods:the Galerkin finite element method (GFEM), the boundary elementmethod (BEM) and the element- free Galerkin method (EFGM). It is atruly meshless method, which means that the discretization is inde-pendent of geometric subdivision into elements or cells, but is onlyboundary integration, however over a local boundary cen- tered) overa domain in question.展开更多
Based on the modified mixed Hellinger-Reissner(H-R) variational principle for elastic bodies with damping, the state-vector equation with parameters is directionally derived from the principle. A new solution for th...Based on the modified mixed Hellinger-Reissner(H-R) variational principle for elastic bodies with damping, the state-vector equation with parameters is directionally derived from the principle. A new solution for the harmonic vibration of simply supported rectangular laminates with damping is proposed by using the precise integration method and Muller method. The general solutions for the free vibration of underdamping, critical damp and overdamping of composite laminates are given simply in terms of the linear damping vibration theory. The effect of viscous damping force on the vibration of composite laminates is investigated through numerical examples. The state-vector equation theory and its application areas are extended.展开更多
The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution varia...The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution variables, and employed a local symmetric weak form. The present method was a truly meshless one as it did not need a finite element or boundary element mesh, either for purpose of interpolation of the solution, or for the integration of the energy. All integrals could be easily evaluated over regularly shaped domains (in general, spheres in three_dimensional problems) and their boundaries. The essential boundary conditions were enforced by the penalty method. Several numerical examples were presented to illustrate the implementation and performance of the present method. The numerical examples presented show that high accuracy can be achieved for arbitrary grid geometries for clamped and simply_supported edge conditions. No post processing procedure is required to computer the strain and stress, since the original solution from the present method, using the moving least squares approximation, is already smooth enough.展开更多
This paper is mainly concerned with the dynamic response of an elastic foundation of finite height bounded to the surface of a saturated half-space. The foundation is subjected to time-harmonic vertical loadings. Firs...This paper is mainly concerned with the dynamic response of an elastic foundation of finite height bounded to the surface of a saturated half-space. The foundation is subjected to time-harmonic vertical loadings. First, the transform solutions for the governing equations of the saturated media are obtained. Then, based on the assumption that the contact between the foundation and the half-space is fully relaxed and the halfspace is completely pervious or impervious, this dynamic mixed boundary-value problem can lead to dual integral equations, which can be further reduced to the Predhohn integral equations of the second kind and solved by numerical procedures. In the numerical extortples, the dynamic colnpliances, displacements and pore pressure are developed for a wide range of frequencies and material/geometrical properties of the saturated soil-foundation system. In most of the cases, the dynamic behavior of an elastic foundation resting on the saturated media significantly differs from that of a rigid disc on the saturated half-space. The solutions obtained can be used to study a variety of wave propagation problems and dynamic soil-structure interactions.展开更多
文摘This paper deals with reducing differential equations of vibration problem of plates with concentrated masses, elastic supports and elastically mounted masses into eigenvalue problem of integral equations. By applying the general function theory and the integral equation theory. the frequency equation is derived in terms of standard eigenvalue problem of a matrix with infinite order. So that, the natural frequencies and mode shapes can be determined. Convergence of this method has also been, discussed at the end of this paper.
文摘The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and element free Galerkin method(EFGM), and is a truly meshless method possessing wide prospects in engineering applications. The companion solution and all the other formulas required in the meshless local boundary integral equation for a thin plate were presented, in order to make this method apply to solve the thin plate problem.
文摘The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By applying Abel transformation the dual integral equations are reduced to Fredholm integral equation of the second kind which is solved numerically.
文摘The quasi-Green's function method is used to solve the free vibration problem of clamped thin plates on the Winkler foundation. Quasi-Green's function is established by the fundamental solution and the boundary equation of the problem. The function satisfies the homogeneous boundary condition of tile problem. The mode-shape differential equation of the free vibration problem of clamped thin plates on the Winkler foundation is reduced to the Fredholm integral equation of the second kind by Green's formula. The irregularity of the kernel of the integral equation is overcome by choosing a suitable form of the normalized boundary equation. The numerical results show the high accuracy of the proposed method.
文摘Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE.
基金Project supported by the Key Laboratory of Disaster Forecast and Control in Engineering,Ministry of Education of China the Key Laboratory of Diagnosis of Fault in Engineering Structures of Guangdong Province of China
文摘A new numerical method-Green quasifunction is proposed. The idea of Green quasifunction method is clarified in detail by considering a vibration problem of simply-supported thin polygonic plates on Pasternak foundation. A Green quasifunction is established by using the fundamental solution and boundary equation of the problem. This function satisfies the homogeneous boundary condition of the problem. The mode shape differential equation of the vibration problem of simply-supported thin plates on Pasternak foundation is reduced to two simultaneous Fredholm integral equations of the second kind by Green formula. There are multiple choices for the normalized boundary equation. Based on a chosen normalized boundary equation, a new normalized boundary equation can be established such that the irregularity of the kernel of integral equations is overcome. Finally, natural frequency is obtained by the condition that there exists a nontrivial solution in the numerically discrete algebraic equations derived from the integral equations. Numerical results show high accuracy of the Green quasifunction method.
文摘Two fundamental solutions for bending problem of Reissner's plates on twoparameter foundation are derived by means of Fouier integral transformation of generalized function in this paper.On the basis of virtual work principles, three boundary integral equations which fit for arbitrary shapes, loads and boundary conditions of thick plates are presented according to Hu Haichang's theory about Reissner's plates. It provides the fundamental theories for the application of BEM. A numerical example is given for clamped, simply supported and free boundary conditions. The results obtained are satisfactory as compared with the analytical methods.
文摘In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these two plate-models for the simply-supported rectangular orthotropic plates. The well-known fundamental solutions of the isotrqpic plates are utlized for the spline integral equation analysis of anisotropic plates.Even with sparse meshes the satisfactory results can be obtained. The analysis of plates on two-parameter elastic foundation is so simple as the common case that only a few terms should be added to the formulas of fictitious loads.
文摘In this paper, a fourth-order viscoelastic plate vibration equation is transformed into a set of two second-order differential equations by introducing an intermediate variable. A three-layer compact difference scheme for the initial-boundary value problem of the viscoelastic plate vibration equation is established. Then the stability and convergence of the difference scheme are analyzed by the energy method, and the convergence order is <img src="Edit_0a250b60-7c3c-4caf-8013-5e302d6477ab.png" alt="" />. Finally, some numerical examples are given of which results verify the accuracy and validity of the scheme.
文摘The Green quasifunction method is employed to solve the free vibration problem of clamped thin plates.A Green quasifunction is established by using the fundamental solution and boundary equation of the problem.This function satisfies the homogeneous boundary condition of the problem.The mode shape differential equation of the free vibration problem of clamped thin plates is reduced to Fredholm integral equation of the second kind by Green formula.Irregularity of the kernel of integral equation is overcome by choosing a suitable form of the normalized boundary equation.Two examples demonstrate the validity of the present method.Comparison with both the series solution and ANSYS finite-element solution shows fine agreement.The present method is a novel and effective mathematical one.
文摘In this study, integral operational methods are used to investigate the thermally induced transverse vibration of a thin elliptic annulus plate with elastic supports at both radial boundaries.The axisymmetric temperature distribution is determined by the heat conduction differential equation and its corresponding boundary conditions by employing a unified integral transform technique by use of Mathieu functions and modified Mathieu functions. The solution of thermally induced vibration of the plate with both ends encased with elastic supports is obtained by employing an integral transform for double Laplace differential equation. The thermal moment is derived on the basis of temperature distribution, and its stresses are obtained based on resultant bending moments per unit width. The numerical calculations of the distributions of the transient temperature and its associated stress distributions are shown in the figures.
基金Project supported by the National Natural Science Foundation of China(No.50678108)the Natural Science Foundation of Zhejiang Province(No.Y106264 )
文摘The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropic saturated soils were transformed into a group of governing differential equations with 1-order by the technique of Fourier expanding with respect to azimuth, and the state equation is established by Hankel integral transform method, furthermore the transfer matrixes within layered media are derived based on the solutions of the state equation. Secondly, by the transfer matrixes, the general solutions of dynamic response for layered transversely isotropic saturated ground excited by an arbitrary harmonic force were established under the boundary conditions, drainage conditions on the surface of ground as well as the contact conditions. Thirdly, the problem was led to a pair of dual integral equations describing the mixed boundaryvalue problem which can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure easily. At the end of this paper, a numerical result concerning vertical and radical displacements both the surface of saturated ground and plate is evaluated.
基金Project supported by the National Natural Science Foundation of China(No.11672131)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘A torsional static and free vibration analysis of the functionally graded nanotube(FGNT)composed of two materials varying continuously according to the power-law along the radial direction is performed using the bi-Helmholtz kernel based stress-driven nonlocal integral model.The differential governing equation and boundary conditions are deduced on the basis of Hamilton’s principle,and the constitutive relationship is expressed as an integral equation with the bi-Helmholtz kernel.Several nominal variables are introduced to simplify the differential governing equation,integral constitutive equation,and boundary conditions.Rather than transforming the constitutive equation from integral to differential forms,the Laplace transformation is used directly to solve the integro-differential equations.The explicit expression for nominal torsional rotation and torque contains four unknown constants,which can be determined with the help of two boundary conditions and two extra constraints from the integral constitutive relation.A few benchmarked examples are solved to illustrate the nonlocal influence on the static torsion of a clamped-clamped(CC)FGNT under torsional constraints and a clamped-free(CF)FGNT under concentrated and uniformly distributed torques as well as the torsional free vibration of an FGNT under different boundary conditions.
基金Project supported by the National Natural Science Foundation of China(Nos.11402133,11620162,11321202,and 11532001)
文摘Circular plates with radially varying thickness, stiffness, and density are widely used for the structural optimization in engineering. The axisymmetric flexural free vibration of such plates, governed by coupled differential equations with variable coefficients by use of the Mindlin plate theory, is very difficult to be studied analytically. In this paper, a novel analytical method is proposed to reduce such governing equations for circular plates to a pair of uncoupled and easily solvable differential equations of the Sturm-Liouville type. There are two important parameters in the reduced equations. One describes the radial variations of the translational inertia and fiexural rigidity with the consideration of the effect of Poisson's ratio. The other reflects the comprehensive effect of the rotatory inertia and shear deformation. The Heun-type equations, recently well-known in physics, are introduced here to solve the flexural free vibration of circular plates analytically, and two basic differential formulae for the local Heun-type functions are discovered for the first time, which will be of great value in enriching the theory of Heun-type differential equations.
文摘By using complex variable methods, the boundary value problem for biharmonic functions arisen from the theory of clamped elastic thin plate is shown to be equivalent to the first fundamental problem in plane elasticity which, as well-known, may be easily solved by reduction to a Fredholm integral equation. The case of circular plate is illustrated in detail, the solution of which is obtained in closed form.
文摘The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi_harmonic operator and Laplace operator, applying the multiple reciprocity method(MRM), the MRM boundary integral equation for plate bending problem was constructed. It proves that the boundary integral equation derived from MRM is essentially identical to the conventional boundary integral equation. Hence the convergence analysis of MRM for plate bending problem can be obtained by the error estimation for the conventional boundary integral equation. In addition, this method can extend to the case of more series of the high_order fundamental solution sequences.
基金the National Natural Science Foundation of China(No.19972019)
文摘A meshless approach to analysis of arbitrary Kirechhoff plates bythe local boundary integral equation (LBIF) method is presented. Themethod combines the advantageous features of all the three meth- ods:the Galerkin finite element method (GFEM), the boundary elementmethod (BEM) and the element- free Galerkin method (EFGM). It is atruly meshless method, which means that the discretization is inde-pendent of geometric subdivision into elements or cells, but is onlyboundary integration, however over a local boundary cen- tered) overa domain in question.
文摘Based on the modified mixed Hellinger-Reissner(H-R) variational principle for elastic bodies with damping, the state-vector equation with parameters is directionally derived from the principle. A new solution for the harmonic vibration of simply supported rectangular laminates with damping is proposed by using the precise integration method and Muller method. The general solutions for the free vibration of underdamping, critical damp and overdamping of composite laminates are given simply in terms of the linear damping vibration theory. The effect of viscous damping force on the vibration of composite laminates is investigated through numerical examples. The state-vector equation theory and its application areas are extended.
文摘The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution variables, and employed a local symmetric weak form. The present method was a truly meshless one as it did not need a finite element or boundary element mesh, either for purpose of interpolation of the solution, or for the integration of the energy. All integrals could be easily evaluated over regularly shaped domains (in general, spheres in three_dimensional problems) and their boundaries. The essential boundary conditions were enforced by the penalty method. Several numerical examples were presented to illustrate the implementation and performance of the present method. The numerical examples presented show that high accuracy can be achieved for arbitrary grid geometries for clamped and simply_supported edge conditions. No post processing procedure is required to computer the strain and stress, since the original solution from the present method, using the moving least squares approximation, is already smooth enough.
基金the Natural Science Foundation of Zhejiang Province(No.Y105480)the Science Foundation of Zhejiang Provincial Commission of Education(No.20051414)
文摘This paper is mainly concerned with the dynamic response of an elastic foundation of finite height bounded to the surface of a saturated half-space. The foundation is subjected to time-harmonic vertical loadings. First, the transform solutions for the governing equations of the saturated media are obtained. Then, based on the assumption that the contact between the foundation and the half-space is fully relaxed and the halfspace is completely pervious or impervious, this dynamic mixed boundary-value problem can lead to dual integral equations, which can be further reduced to the Predhohn integral equations of the second kind and solved by numerical procedures. In the numerical extortples, the dynamic colnpliances, displacements and pore pressure are developed for a wide range of frequencies and material/geometrical properties of the saturated soil-foundation system. In most of the cases, the dynamic behavior of an elastic foundation resting on the saturated media significantly differs from that of a rigid disc on the saturated half-space. The solutions obtained can be used to study a variety of wave propagation problems and dynamic soil-structure interactions.