We consider matrix integrable fifth-order mKdV equations via a kind of group reductions of the Ablowitz–Kaup–Newell–Segur matrix spectral problems. Based on properties of eigenvalue and adjoint eigenvalue problems,...We consider matrix integrable fifth-order mKdV equations via a kind of group reductions of the Ablowitz–Kaup–Newell–Segur matrix spectral problems. Based on properties of eigenvalue and adjoint eigenvalue problems, we solve the corresponding Riemann–Hilbert problems, where eigenvalues could equal adjoint eigenvalues, and construct their soliton solutions, when there are zero reflection coefficients. Illustrative examples of scalar and two-component integrable fifthorder mKdV equations are given.展开更多
A new model for a smart shell of revolution treated with active constrained layer damping (ACLD) is developed, and the damping effects of the ACLD treatment are discussed. The motion and electric analytical formulat...A new model for a smart shell of revolution treated with active constrained layer damping (ACLD) is developed, and the damping effects of the ACLD treatment are discussed. The motion and electric analytical formulation of the piezoelectric constrained layer are presented first. Based on the authors~ recent research on shells of revolution treated with passive constrained layer damping (PCLD), the integrated first-order differential matrix equation of a shell of revolution partially treated with ring ACLD blocks is derived in the frequency domain. By virtue of the extended homogeneous capacity precision integration technology, a stable and simple numerical method is further proposed to solve the above equation. Then, the vibration responses of an ACLD shell of revolution are measured by using the present model and method. The results show that the control performance of the ACLD treatment is complicated and frequency-dependent. In a certain frequency range, the ACLD treatment can achieve better damping characteristics compared with the conventional PCLD treatment.展开更多
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 11975145, 11972291, and 51771083)the Ministry of Science and Technology of China (Grant No. G2021016032L)the Natural Science Foundation for Colleges and Universities in Jiangsu Province, China (Grant No. 17 KJB 110020)。
文摘We consider matrix integrable fifth-order mKdV equations via a kind of group reductions of the Ablowitz–Kaup–Newell–Segur matrix spectral problems. Based on properties of eigenvalue and adjoint eigenvalue problems, we solve the corresponding Riemann–Hilbert problems, where eigenvalues could equal adjoint eigenvalues, and construct their soliton solutions, when there are zero reflection coefficients. Illustrative examples of scalar and two-component integrable fifthorder mKdV equations are given.
基金supported by the National Natural Science Foundation of China(Nos.10662003,11162001 and 51105083)the Natural Science Foundation of Guangxi Province of China(No.2012GXNSFAA053207)
文摘A new model for a smart shell of revolution treated with active constrained layer damping (ACLD) is developed, and the damping effects of the ACLD treatment are discussed. The motion and electric analytical formulation of the piezoelectric constrained layer are presented first. Based on the authors~ recent research on shells of revolution treated with passive constrained layer damping (PCLD), the integrated first-order differential matrix equation of a shell of revolution partially treated with ring ACLD blocks is derived in the frequency domain. By virtue of the extended homogeneous capacity precision integration technology, a stable and simple numerical method is further proposed to solve the above equation. Then, the vibration responses of an ACLD shell of revolution are measured by using the present model and method. The results show that the control performance of the ACLD treatment is complicated and frequency-dependent. In a certain frequency range, the ACLD treatment can achieve better damping characteristics compared with the conventional PCLD treatment.