Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote ...Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design.展开更多
A static and dynamic collaborative optimization method for materials and structure with uniform periodic microstructure is presented.The sensitivity formulae of hierarchical optimization,i.e.,material design,structure...A static and dynamic collaborative optimization method for materials and structure with uniform periodic microstructure is presented.The sensitivity formulae of hierarchical optimization,i.e.,material design,structure design and integrated design for porous metals,are given.On the base of the hierarchical optimization model,numerical experiments of an MBB beam and a cantilever one were carried out.Based on porous metals bearing multi-functionality,the differences and applicability of hierarchical optimization are discussed in the structure loading field.It is concluded that structure design is mainly oriented to structure efficiency,material design is mainly oriented to multi-functionality,and integrated design is oriented to structure efficiency and multi-functionality.This work provides some useful ideas for the selection of porous metals design method.展开更多
基金This manuscript is supported by the National Key Research and Development Program of China(Grant No.2021YFB2601000)the National Natural Science Foundation of China(Grant Nos.52278437,52008044)+2 种基金the Natural Science Foundation of Hunan Province(Grant No.2022JJ40479)the Science and Technology Innovation Program of Hunan Provincial Department of Transportation(Grant No.202236)the Changsha Outstanding Innovative Youth Training Program Project(Grant No.kq2306009).
文摘Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2010CB832700)the Science and Technology Development Fundation of Academy of Engineering Physics(Grant No. 2008A0302011)
文摘A static and dynamic collaborative optimization method for materials and structure with uniform periodic microstructure is presented.The sensitivity formulae of hierarchical optimization,i.e.,material design,structure design and integrated design for porous metals,are given.On the base of the hierarchical optimization model,numerical experiments of an MBB beam and a cantilever one were carried out.Based on porous metals bearing multi-functionality,the differences and applicability of hierarchical optimization are discussed in the structure loading field.It is concluded that structure design is mainly oriented to structure efficiency,material design is mainly oriented to multi-functionality,and integrated design is oriented to structure efficiency and multi-functionality.This work provides some useful ideas for the selection of porous metals design method.