In this paper,we are concerned with the regularity and symmetry of positive solutions of the following nonlinear integral system u(x) = ∫R n G α(x-y)v(y) q/|y|β dy,v(x) = ∫R n G α(x-y)u(y) p/|y|β...In this paper,we are concerned with the regularity and symmetry of positive solutions of the following nonlinear integral system u(x) = ∫R n G α(x-y)v(y) q/|y|β dy,v(x) = ∫R n G α(x-y)u(y) p/|y|β dy for x ∈ R n,where G α(x) is the kernel of Bessel potential of order α,0 ≤β 〈 α 〈 n,1 〈 p,q 〈 n-β/β and 1/p + 1 + 1/q + 1 〉 n-α + β/n.We show that positive solution pairs(u,v) ∈ L p +1(R n) × L q +1(R n) are Ho¨lder continuous,radially symmetric and strictly decreasing about the origin.展开更多
We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone non...We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone nondecreasing are real-valued functions of homogeneous degree n+α/n-α and are monotone nondecreasing with respect to all the independent variables U1, u2, ..., urn.In the special case n ≥ 3 and α = 2. we show that the above system is equivalent to thefollowing elliptic PDE system:This system is closely related to the stationary SchrSdinger system with critical exponents for Bose-Einstein condensate展开更多
In this paper, we consider the following integral system: u(x) = R n v q (y) | x y | nα dy, v(x) = R n u p (y) | x y | nμ dy, (0.1) where 0 〈 α, μ 〈 n; p, q ≥ 1. Using the method of moving planes...In this paper, we consider the following integral system: u(x) = R n v q (y) | x y | nα dy, v(x) = R n u p (y) | x y | nμ dy, (0.1) where 0 〈 α, μ 〈 n; p, q ≥ 1. Using the method of moving planes in an integral form which was recently introduced by Chen, Li, and Ou in [2, 4, 8], we show that all positive solutions of (0.1) are radially symmetric and decreasing with respect to some point under some general conditions of integrability. The results essentially improve and extend previously known results [4, 8].展开更多
In this paper, Liouville-type theorems of nonnegative solutions for some elliptic integral systems are considered. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of St...In this paper, Liouville-type theorems of nonnegative solutions for some elliptic integral systems are considered. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of Stein-Weiss inequality instead of Maximum Principle.展开更多
In this paper, we investigate the positive solutions to the following integral system with a polyharmonic extension operator on R^+_n:{u(x)=c_n,a∫_?R_+~n(x_n^(1-a_v)(y)/|x-y|^(n-a))dy,x∈R_+~n,v(y)=c_n,a∫_R_+~n(x_n^...In this paper, we investigate the positive solutions to the following integral system with a polyharmonic extension operator on R^+_n:{u(x)=c_n,a∫_?R_+~n(x_n^(1-a_v)(y)/|x-y|^(n-a))dy,x∈R_+~n,v(y)=c_n,a∫_R_+~n(x_n^(1-a_uθ)(x)/|x-y|^(n-a))dx,y∈ ?R_+~n,where n 2, 2-n < a < 1, κ, θ > 0. This integral system arises from the Euler-Lagrange equation corresponding to an integral inequality on the upper half space established by Chen(2014). The explicit formulations of positive solutions are obtained by the method of moving spheres for the critical case κ =n-2+a/n-a,θ =n+2-a/ n-2+a. Moreover,we also give the nonexistence of positive solutions in the subcritical case for the above system.展开更多
In this paper, we study the positive solutions for a class of integral systems and prove that all the solutions are radially symmetric and monotonically decreasing about some point. Moreover, we also obtain the unique...In this paper, we study the positive solutions for a class of integral systems and prove that all the solutions are radially symmetric and monotonically decreasing about some point. Moreover, we also obtain the uniqueness result for a special case. We use a new type of moving plane method introduced by Chen-Li-Ou [1]. Our new ingredient is the use of Hardy-Littlewood-Sobolev inequality instead of Maximum Principle.展开更多
Refer to the Hamiltonian system, first integrals of the Birkhoffian system can be found by using of the perfect differential method. Through these first integrals, the order of the Birkhoffian system can be reduced. T...Refer to the Hamiltonian system, first integrals of the Birkhoffian system can be found by using of the perfect differential method. Through these first integrals, the order of the Birkhoffian system can be reduced. Then according to the alternate of the coordinate, a kind of new partial differential operator was defined in order to hold the Birkhoff form. The result shows that the Birkhoffian system has generalized energy integrals and cyclic integrals. Furthermore, each integral can reduce the order of equations two degrees.展开更多
Consider the system of integral equations with weighted functions in Rn,{u(x) =∫Rn|x-y|α-nQ(y)v(y)qdy1,v(x)=∫Rn|x-y|α-nK(y)u(y)pdy,where 0 < α < n,1/(p+1) + 1/(q+1)≥(n-α)/n1,α/(n-α) < p1q < ∞1,Q(...Consider the system of integral equations with weighted functions in Rn,{u(x) =∫Rn|x-y|α-nQ(y)v(y)qdy1,v(x)=∫Rn|x-y|α-nK(y)u(y)pdy,where 0 < α < n,1/(p+1) + 1/(q+1)≥(n-α)/n1,α/(n-α) < p1q < ∞1,Q(x) and K(x) satisfy some suitable conditions.It is shown that every positive regular solution(u(x)1,v(x)) is symmetric about some plane by developing the moving plane method in an integral form.Moreover,regularity of the solution is studied.Finally,the nonexistence of positive solutions to the system in the case 0 < p1q <(n+α)/(n-α) is also discussed.展开更多
By using cone theory and the MSnch fixed theorem combined with a monotone iterative technique, we investigate the existence of positive solutions for systems of second- order nonlinear singular differential equations ...By using cone theory and the MSnch fixed theorem combined with a monotone iterative technique, we investigate the existence of positive solutions for systems of second- order nonlinear singular differential equations with integral boundary conditions on infinite interval and establish the existence theorem of positive solutions and iterative sequence for approximating the positive solutions. The results in this paper improve some known results.展开更多
This paper presents a discrete vaxiational principle and a method to build first-integrals for finite dimensional Lagrange-Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function. T...This paper presents a discrete vaxiational principle and a method to build first-integrals for finite dimensional Lagrange-Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function. The discrete variational principle and the corresponding Euler-Lagrange equations are derived from a discrete action associated to these systems. The first-integrals are obtained by introducing the infinitesimal transformation with respect to the generalized coordinates and electric quantities of the systems. This work also extends discrete Noether symmetries to mechanico-electrical dynamical systems. A practical example is presented to illustrate the results.展开更多
Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed ...Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed time stability theory, which ensures precise convergence of the state variables of controlled system, and overcomes the drawback of convergence time growing unboundedly as the initial value increases in finite time controller. It makes the controlled system converge to the control objective within a fixed time bounded by a constant as the initial value grows, and convergence time can be changed by adjusting parameters of controllers properly. Compared with other fixed time controllers, the fixed time integral sliding mode controller proposed in this paper achieves chattering-free control, and integral expression is used to avoid singularity generated by derivation. Finally, the controller is used to stabilize four-order chaotic power system. The results demonstrate that the controller realizes the non-singular chattering-free control of chaotic oscillation in the power system and guarantees the fixed time convergence of state variables, which shows its higher superiority than other finite time controllers.展开更多
This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a disc...This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a discrete analogue of theorem of Noether in the calculus of variations. An example is given to illustrate the application of the results.展开更多
This paper investigates the stability of time-delay systems via a multiple integral approach. Based on the refined Jensen-based inequality, a novel multiple integral inequality is proposed. Applying the multiple integ...This paper investigates the stability of time-delay systems via a multiple integral approach. Based on the refined Jensen-based inequality, a novel multiple integral inequality is proposed. Applying the multiple integral inequality to estimate the derivative of Lyapunov-Krasovskii functional(LKF) with multiple integral terms, a novel stability condition is formulated for the linear time-delay systems. Two numerical examples are employed to demonstrate the improvements of our results.展开更多
This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transf...This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.展开更多
This paper studies a type of integral and reduction of the generalized Birkhoffian system. An existent condition and the form of the integral are obtained. By using the integral, the dimension of the system can be red...This paper studies a type of integral and reduction of the generalized Birkhoffian system. An existent condition and the form of the integral are obtained. By using the integral, the dimension of the system can be reduced two degrees. An example is given to illustrate the application of the results.展开更多
The hydraulic oscillation of surge tank was analyzed through numerical simulation.A rectangular integral scheme was established in order to improve the numerical model.According to the boundary control equation of sur...The hydraulic oscillation of surge tank was analyzed through numerical simulation.A rectangular integral scheme was established in order to improve the numerical model.According to the boundary control equation of surge tank, the rectangular integral scheme omits the second-order infinitesimal and simplifies the solving process.An example was provided to illustrate the rectangular integral scheme, which is compared with the traditional trapezoid integral scheme.Appropriate numerical solutions were gained through the new scheme.Results show that the rectangular integral scheme is more convenient than the trapezoid integral one, and it can be applied to the numerical simulation of various surge tanks in complex pipeline systems.展开更多
Based on modern differential geometry, the symplectic structure of a Birkhoffian system which is an extension of conservative and nonconservative systems is analyzed. An integral invariant of Poincaré_Cartan...Based on modern differential geometry, the symplectic structure of a Birkhoffian system which is an extension of conservative and nonconservative systems is analyzed. An integral invariant of Poincaré_Cartan's type is constructed for Birkhoffian systems. Finally, one_dimensional damped vibration is taken as an illustrative example and an integral invariant of Poincaré's type is found.展开更多
A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with...A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with uncertain and continuous functions in the process of backstepping design.The use of an integral barrier Lyapunov function not only ensures that all states are within the bounds of the constraint,but also mixes the states and errors to directly constrain the state,reducing the conservativeness of the constraint satisfaction condition.Considering that the states in most nonlinear systems are immeasurable,a fuzzy adaptive states observer is constructed to estimate the unknown states.Combined with adaptive backstepping technique,an adaptive fuzzy output feedback control method is proposed.The proposed control method ensures that all signals in the closed-loop system are bounded,and that the tracking error converges to a bounded tight set without violating the full state constraint.The simulation results prove the effectiveness of the proposed control scheme.展开更多
A transition Fokker-Planck-Kolmogorov(FPK) equation describes the procedure of the probability density evolution whereby the dynamic response and reliability evaluation of mechanical systems could be carried out. The ...A transition Fokker-Planck-Kolmogorov(FPK) equation describes the procedure of the probability density evolution whereby the dynamic response and reliability evaluation of mechanical systems could be carried out. The transition FPK equation of vibratory energy harvesting systems is a four-dimensional nonlinear partial differential equation. Therefore, it is often very challenging to obtain an exact probability density. This paper aims to investigate the stochastic response of vibration energy harvesters(VEHs)under the Gaussian white noise excitation. The numerical path integration method is applied to different types of nonlinear VEHs. The probability density function(PDF)from the transition FPK equation of energy harvesting systems is calculated using the path integration method. The path integration process is introduced by using the GaussLegendre integration scheme, and the short-time transition PDF is formulated with the short-time Gaussian approximation. The stationary probability densities of the transition FPK equation for vibratory energy harvesters are determined. The procedure is applied to three different types of nonlinear VEHs under Gaussian white excitations. The approximately numerical outcomes are qualitatively and quantitatively supported by the Monte Carlo simulation(MCS).展开更多
The velocity tracking control of a hydraulic servo system is studied. Sincethe dynamics of the system are highly nonlinear and have large extent of model uncertainties, suchas big changes in load and parameters, a der...The velocity tracking control of a hydraulic servo system is studied. Sincethe dynamics of the system are highly nonlinear and have large extent of model uncertainties, suchas big changes in load and parameters, a derivation and integral sliding mode variable structurecontrol scheme (DI-SVSC) is proposed. An integral controller is introduced to avoid the assumptionthat the derivative of desired signal must be known in conventional sliding mode variable structurecontrol, a nonlinear derivation controller is used to weaken the chattering of system. The designmethod of switching function in integral sliding mode control, nonlinear derivation coefficient andcontrollers of DI-SVSC is presented respectively. Simulation shows that the control approach is ofnice robustness and improves velocity tracking accuracy considerably.展开更多
基金Chen research is supported by NSF of China (10961015)Yang research is supported by NSF of China (10961016)the GAN PO555 Program of Jiangxi
文摘In this paper,we are concerned with the regularity and symmetry of positive solutions of the following nonlinear integral system u(x) = ∫R n G α(x-y)v(y) q/|y|β dy,v(x) = ∫R n G α(x-y)u(y) p/|y|β dy for x ∈ R n,where G α(x) is the kernel of Bessel potential of order α,0 ≤β 〈 α 〈 n,1 〈 p,q 〈 n-β/β and 1/p + 1 + 1/q + 1 〉 n-α + β/n.We show that positive solution pairs(u,v) ∈ L p +1(R n) × L q +1(R n) are Ho¨lder continuous,radially symmetric and strictly decreasing about the origin.
基金supported by NSF Grant DMS-0604638Li partially supported by NSF Grant DMS-0401174
文摘We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone nondecreasing are real-valued functions of homogeneous degree n+α/n-α and are monotone nondecreasing with respect to all the independent variables U1, u2, ..., urn.In the special case n ≥ 3 and α = 2. we show that the above system is equivalent to thefollowing elliptic PDE system:This system is closely related to the stationary SchrSdinger system with critical exponents for Bose-Einstein condensate
基金Supported by National Natural Science Foundation of China-NSAF (10976026)
文摘In this paper, we consider the following integral system: u(x) = R n v q (y) | x y | nα dy, v(x) = R n u p (y) | x y | nμ dy, (0.1) where 0 〈 α, μ 〈 n; p, q ≥ 1. Using the method of moving planes in an integral form which was recently introduced by Chen, Li, and Ou in [2, 4, 8], we show that all positive solutions of (0.1) are radially symmetric and decreasing with respect to some point under some general conditions of integrability. The results essentially improve and extend previously known results [4, 8].
文摘In this paper, Liouville-type theorems of nonnegative solutions for some elliptic integral systems are considered. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of Stein-Weiss inequality instead of Maximum Principle.
基金supported by National Natural Science Foundation of China (Grant No. 11571268)Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2017JQ1022)the Fundamental Research Funds for the Central Universities (Grant No. GK201802015)
文摘In this paper, we investigate the positive solutions to the following integral system with a polyharmonic extension operator on R^+_n:{u(x)=c_n,a∫_?R_+~n(x_n^(1-a_v)(y)/|x-y|^(n-a))dy,x∈R_+~n,v(y)=c_n,a∫_R_+~n(x_n^(1-a_uθ)(x)/|x-y|^(n-a))dx,y∈ ?R_+~n,where n 2, 2-n < a < 1, κ, θ > 0. This integral system arises from the Euler-Lagrange equation corresponding to an integral inequality on the upper half space established by Chen(2014). The explicit formulations of positive solutions are obtained by the method of moving spheres for the critical case κ =n-2+a/n-a,θ =n+2-a/ n-2+a. Moreover,we also give the nonexistence of positive solutions in the subcritical case for the above system.
文摘In this paper, we study the positive solutions for a class of integral systems and prove that all the solutions are radially symmetric and monotonically decreasing about some point. Moreover, we also obtain the uniqueness result for a special case. We use a new type of moving plane method introduced by Chen-Li-Ou [1]. Our new ingredient is the use of Hardy-Littlewood-Sobolev inequality instead of Maximum Principle.
文摘Refer to the Hamiltonian system, first integrals of the Birkhoffian system can be found by using of the perfect differential method. Through these first integrals, the order of the Birkhoffian system can be reduced. Then according to the alternate of the coordinate, a kind of new partial differential operator was defined in order to hold the Birkhoff form. The result shows that the Birkhoffian system has generalized energy integrals and cyclic integrals. Furthermore, each integral can reduce the order of equations two degrees.
基金supported by Chinese National Science Fund for Distinguished Young Scholars (Grant No.10925104)National Natural Science Foundation of China (Grant No.11001221)+1 种基金the Foundation of Shaanxi Province Education Department (Grant No. 2010JK549)the Foundation of Xi’an Statistical Research Institute (Grant No.10JD04)
文摘Consider the system of integral equations with weighted functions in Rn,{u(x) =∫Rn|x-y|α-nQ(y)v(y)qdy1,v(x)=∫Rn|x-y|α-nK(y)u(y)pdy,where 0 < α < n,1/(p+1) + 1/(q+1)≥(n-α)/n1,α/(n-α) < p1q < ∞1,Q(x) and K(x) satisfy some suitable conditions.It is shown that every positive regular solution(u(x)1,v(x)) is symmetric about some plane by developing the moving plane method in an integral form.Moreover,regularity of the solution is studied.Finally,the nonexistence of positive solutions to the system in the case 0 < p1q <(n+α)/(n-α) is also discussed.
基金SuppoSed by the NSF of Anhui Provincial Education Depaxtment(KJ2012A265,KJ2012B187)
文摘By using cone theory and the MSnch fixed theorem combined with a monotone iterative technique, we investigate the existence of positive solutions for systems of second- order nonlinear singular differential equations with integral boundary conditions on infinite interval and establish the existence theorem of positive solutions and iterative sequence for approximating the positive solutions. The results in this paper improve some known results.
基金Project supported by State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos 10672143 and 10471145) and the Natural Science Foundation of Henan Province Government, China (Grant Nos 0311011400 and 0511022200).
文摘This paper presents a discrete vaxiational principle and a method to build first-integrals for finite dimensional Lagrange-Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function. The discrete variational principle and the corresponding Euler-Lagrange equations are derived from a discrete action associated to these systems. The first-integrals are obtained by introducing the infinitesimal transformation with respect to the generalized coordinates and electric quantities of the systems. This work also extends discrete Noether symmetries to mechanico-electrical dynamical systems. A practical example is presented to illustrate the results.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51521065)
文摘Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed time stability theory, which ensures precise convergence of the state variables of controlled system, and overcomes the drawback of convergence time growing unboundedly as the initial value increases in finite time controller. It makes the controlled system converge to the control objective within a fixed time bounded by a constant as the initial value grows, and convergence time can be changed by adjusting parameters of controllers properly. Compared with other fixed time controllers, the fixed time integral sliding mode controller proposed in this paper achieves chattering-free control, and integral expression is used to avoid singularity generated by derivation. Finally, the controller is used to stabilize four-order chaotic power system. The results demonstrate that the controller realizes the non-singular chattering-free control of chaotic oscillation in the power system and guarantees the fixed time convergence of state variables, which shows its higher superiority than other finite time controllers.
基金Project partially supported by the National Natural Science Foundation of China (Grant No 10172056) and the Science Research of the Education Bureau of Anhui Province, China (Grant No 2006KJ263B). Acknowledgement We wish to thank the referees for their careful reading of the manuscript and their useful remarks which helped us to improve the quality of this paper.
文摘This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a discrete analogue of theorem of Noether in the calculus of variations. An example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China(61473070,61433004,61627809)SAPI Fundamental Research Funds(2013ZCX01,2013ZCX14)
文摘This paper investigates the stability of time-delay systems via a multiple integral approach. Based on the refined Jensen-based inequality, a novel multiple integral inequality is proposed. Applying the multiple integral inequality to estimate the derivative of Lyapunov-Krasovskii functional(LKF) with multiple integral terms, a novel stability condition is formulated for the linear time-delay systems. Two numerical examples are employed to demonstrate the improvements of our results.
基金supported by National Natural Science Foundation of China (No. 60574014, No. 60425310)Doctor Subject Foundation of China (No. 200805330004)+2 种基金Program for New Century Excellent Talents in University (No. NCET-06-0679)Natural Science Foundation of Hunan Province of China (No. 08JJ1010)Science Foundation of Education Department of Hunan Province (No. 08C106)
文摘This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10772025, 10932002, and 10972031)the Beijing Municipal Key Disciplines Fund for General Mechanics and Foundation of Mechanics
文摘This paper studies a type of integral and reduction of the generalized Birkhoffian system. An existent condition and the form of the integral are obtained. By using the integral, the dimension of the system can be reduced two degrees. An example is given to illustrate the application of the results.
基金Supported by National Natural Science Foundation of China (No.50709029)
文摘The hydraulic oscillation of surge tank was analyzed through numerical simulation.A rectangular integral scheme was established in order to improve the numerical model.According to the boundary control equation of surge tank, the rectangular integral scheme omits the second-order infinitesimal and simplifies the solving process.An example was provided to illustrate the rectangular integral scheme, which is compared with the traditional trapezoid integral scheme.Appropriate numerical solutions were gained through the new scheme.Results show that the rectangular integral scheme is more convenient than the trapezoid integral one, and it can be applied to the numerical simulation of various surge tanks in complex pipeline systems.
基金国家自然科学基金,国家自然科学基金,国家自然科学基金,Science Research Foundation of Liaoning Educational Committee of China
文摘Based on modern differential geometry, the symplectic structure of a Birkhoffian system which is an extension of conservative and nonconservative systems is analyzed. An integral invariant of Poincaré_Cartan's type is constructed for Birkhoffian systems. Finally, one_dimensional damped vibration is taken as an illustrative example and an integral invariant of Poincaré's type is found.
基金supported in part by the National Natural Science Foundation of China(6202530361973147)the LiaoNing Revitalization Talents Program(XLYC1907050)。
文摘A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with uncertain and continuous functions in the process of backstepping design.The use of an integral barrier Lyapunov function not only ensures that all states are within the bounds of the constraint,but also mixes the states and errors to directly constrain the state,reducing the conservativeness of the constraint satisfaction condition.Considering that the states in most nonlinear systems are immeasurable,a fuzzy adaptive states observer is constructed to estimate the unknown states.Combined with adaptive backstepping technique,an adaptive fuzzy output feedback control method is proposed.The proposed control method ensures that all signals in the closed-loop system are bounded,and that the tracking error converges to a bounded tight set without violating the full state constraint.The simulation results prove the effectiveness of the proposed control scheme.
基金supported by the National Natural Science Foundation of China(Nos.11702119 and51779111)the Natural Science Foundation of Jiangsu Province of China(Nos.BK20170565 and BK20170581)
文摘A transition Fokker-Planck-Kolmogorov(FPK) equation describes the procedure of the probability density evolution whereby the dynamic response and reliability evaluation of mechanical systems could be carried out. The transition FPK equation of vibratory energy harvesting systems is a four-dimensional nonlinear partial differential equation. Therefore, it is often very challenging to obtain an exact probability density. This paper aims to investigate the stochastic response of vibration energy harvesters(VEHs)under the Gaussian white noise excitation. The numerical path integration method is applied to different types of nonlinear VEHs. The probability density function(PDF)from the transition FPK equation of energy harvesting systems is calculated using the path integration method. The path integration process is introduced by using the GaussLegendre integration scheme, and the short-time transition PDF is formulated with the short-time Gaussian approximation. The stationary probability densities of the transition FPK equation for vibratory energy harvesters are determined. The procedure is applied to three different types of nonlinear VEHs under Gaussian white excitations. The approximately numerical outcomes are qualitatively and quantitatively supported by the Monte Carlo simulation(MCS).
文摘The velocity tracking control of a hydraulic servo system is studied. Sincethe dynamics of the system are highly nonlinear and have large extent of model uncertainties, suchas big changes in load and parameters, a derivation and integral sliding mode variable structurecontrol scheme (DI-SVSC) is proposed. An integral controller is introduced to avoid the assumptionthat the derivative of desired signal must be known in conventional sliding mode variable structurecontrol, a nonlinear derivation controller is used to weaken the chattering of system. The designmethod of switching function in integral sliding mode control, nonlinear derivation coefficient andcontrollers of DI-SVSC is presented respectively. Simulation shows that the control approach is ofnice robustness and improves velocity tracking accuracy considerably.