Current research is about the injection of a viscous fluid in the presence of a transverse uniform magnetic field to reduce the sliding drag.There is a slip-on both the slider and the ground in the two cases,for examp...Current research is about the injection of a viscous fluid in the presence of a transverse uniform magnetic field to reduce the sliding drag.There is a slip-on both the slider and the ground in the two cases,for example,a long porous slider and a circular porous slider.By utilizing similarity transformation Navier-Stokes equations are converted into coupled equations which are tackled by Integral Transform Method.Solutions are obtained for different values of Reynolds numbers,velocity slip,and magnetic field.We found that surface slip and Reynolds number has a substantial influence on the lift and drag of long and circular sliders,whereas the magnetic effect is also noticeable.展开更多
The nonlinear fracture behavior of quasi-brittle materials is closely related with the cohesive force distribution of fracture process zone at crack tip. Based on fracture character of quasi-brittle materials, a mecha...The nonlinear fracture behavior of quasi-brittle materials is closely related with the cohesive force distribution of fracture process zone at crack tip. Based on fracture character of quasi-brittle materials, a mechanical analysis model of half infinite crack with cohesive stress is presented. A pair of integral equations is established according to the superposition principle of crack opening displacement in solids, and the fictitious adhesive stress is unknown function . The properties of integral equations are analyzed, and the series function expression of cohesive stress is certified. By means of the data of actual crack opening displacement, two approaches to gain the cohesive stress distribution are proposed through resolving algebra equation. They are the integral transformation method for continuous displacement of actual crack opening, and the least square method for the discrete data of crack opening displacement. The calculation examples of two approaches and associated discussions are given.展开更多
Based on the theory of Eider-Bernoulli beam and Winkler assumption for elastic foundation, a mathematical model is presented. By using Fourier transformation for space variable, Laplace transformation for time variabl...Based on the theory of Eider-Bernoulli beam and Winkler assumption for elastic foundation, a mathematical model is presented. By using Fourier transformation for space variable, Laplace transformation for time variable and convolution theorem for their inverse transformations, a general solution for dynamical problem of infinite beam on an elastic foundation is obtained. Finally, the cases of free vibration,impulsive response and moving load are also discussed.展开更多
Analytical solutions for a Griffith crack inside an infinite piezoel ectromagnetic medium under combined mechanical-electrical-magnetic loadings are formulated using integral transform method. The singular stress, ele...Analytical solutions for a Griffith crack inside an infinite piezoel ectromagnetic medium under combined mechanical-electrical-magnetic loadings are formulated using integral transform method. The singular stress, electric and magnetic fields in the piez oelectromagnetic material are obtained by the theory of linear piezoelectromagneticity. Fourier transforms are used to reduce the mixed boundary value problems of the crack, which is assumed to b e permeable, to dual integral equations. The solution of the dual integral equations is then ex pressed analytically. Expressions for strains, stresses, electric fields, electric displacements, mag netic fields and magnetic inductions in the vicinity of the crack tip are derived. Field intensi ty factors and energy release rate for piezoelectromagnetic material are obtaine d. The stresses, electric displacements and magnetic inductions at the crack tip show the traditional square root singu larities; and the electric field intensity factor (EFIF) and the magnetic field intensity factor (MFIF) are always zero.展开更多
This work presents a theoretical study of contact problem. The Fourier integral transform method based on the surface elasticity theory is adopted to derive the fundamental solution for the contact problem with surfac...This work presents a theoretical study of contact problem. The Fourier integral transform method based on the surface elasticity theory is adopted to derive the fundamental solution for the contact problem with surface effects, in which both the surface tension and the surface elasticity are considered. As a special case, the deformation induced by a triangle distribution force is discussed in detail. The results are compared with those of the classical contact problem. At nano-scale, the contributions of the surface tension and the surface elasticity to the stress and displacement are not equal at the contact surface. The surface tension plays a major role to the normal stress, whereas the shear stress is mainly affected by the surface elasticity. In addition, the hardness of material depends strongly on the surface effects. This study is helpful to characterize and measure the mechanical properties of soft materials through nanoindentation.展开更多
The rocks surrounding a roadway exhibit some special and complex phenomena with increasing depth of excavation in underground engineering.Quasi-static analysis cannot adequately explain these engineering problems.The ...The rocks surrounding a roadway exhibit some special and complex phenomena with increasing depth of excavation in underground engineering.Quasi-static analysis cannot adequately explain these engineering problems.The computational model of a circular roadway considering the transient effect of excavation unloading is established for these problems.The time factor makes the solution of the problem difficult.Thus,the computational model is divided into a dynamic model and a static model.The Laplace integral transform and inverse transform are performed to solve the dynamic model and elasticity theory is used to analyze the static model.The results from an example show that circumferential stress increases and radial stress decreases with time.The stress difference becomes large gradually in this progress.The displacement increases with unloading time and decreases with the radial depth of surrounding rocks.It can be seen that the development trend of unloading and displacement is similar by comparing their rates.Finally,the results of ANSYS are used to verify the analytical solution.The contrast indicates that the laws of the two methods are basically in agreement.Thus,the analysis can provide a reference for further study.展开更多
文摘Current research is about the injection of a viscous fluid in the presence of a transverse uniform magnetic field to reduce the sliding drag.There is a slip-on both the slider and the ground in the two cases,for example,a long porous slider and a circular porous slider.By utilizing similarity transformation Navier-Stokes equations are converted into coupled equations which are tackled by Integral Transform Method.Solutions are obtained for different values of Reynolds numbers,velocity slip,and magnetic field.We found that surface slip and Reynolds number has a substantial influence on the lift and drag of long and circular sliders,whereas the magnetic effect is also noticeable.
基金Foundation items: the National Key Basic Research and Development Program (973 Program)(2002CB412709) the National Natural Science Foundation of China (10272068, 50178015) Science Foundation of Shandong Province of China (Y202A02)
文摘The nonlinear fracture behavior of quasi-brittle materials is closely related with the cohesive force distribution of fracture process zone at crack tip. Based on fracture character of quasi-brittle materials, a mechanical analysis model of half infinite crack with cohesive stress is presented. A pair of integral equations is established according to the superposition principle of crack opening displacement in solids, and the fictitious adhesive stress is unknown function . The properties of integral equations are analyzed, and the series function expression of cohesive stress is certified. By means of the data of actual crack opening displacement, two approaches to gain the cohesive stress distribution are proposed through resolving algebra equation. They are the integral transformation method for continuous displacement of actual crack opening, and the least square method for the discrete data of crack opening displacement. The calculation examples of two approaches and associated discussions are given.
文摘Based on the theory of Eider-Bernoulli beam and Winkler assumption for elastic foundation, a mathematical model is presented. By using Fourier transformation for space variable, Laplace transformation for time variable and convolution theorem for their inverse transformations, a general solution for dynamical problem of infinite beam on an elastic foundation is obtained. Finally, the cases of free vibration,impulsive response and moving load are also discussed.
文摘Analytical solutions for a Griffith crack inside an infinite piezoel ectromagnetic medium under combined mechanical-electrical-magnetic loadings are formulated using integral transform method. The singular stress, electric and magnetic fields in the piez oelectromagnetic material are obtained by the theory of linear piezoelectromagneticity. Fourier transforms are used to reduce the mixed boundary value problems of the crack, which is assumed to b e permeable, to dual integral equations. The solution of the dual integral equations is then ex pressed analytically. Expressions for strains, stresses, electric fields, electric displacements, mag netic fields and magnetic inductions in the vicinity of the crack tip are derived. Field intensi ty factors and energy release rate for piezoelectromagnetic material are obtaine d. The stresses, electric displacements and magnetic inductions at the crack tip show the traditional square root singu larities; and the electric field intensity factor (EFIF) and the magnetic field intensity factor (MFIF) are always zero.
文摘This work presents a theoretical study of contact problem. The Fourier integral transform method based on the surface elasticity theory is adopted to derive the fundamental solution for the contact problem with surface effects, in which both the surface tension and the surface elasticity are considered. As a special case, the deformation induced by a triangle distribution force is discussed in detail. The results are compared with those of the classical contact problem. At nano-scale, the contributions of the surface tension and the surface elasticity to the stress and displacement are not equal at the contact surface. The surface tension plays a major role to the normal stress, whereas the shear stress is mainly affected by the surface elasticity. In addition, the hardness of material depends strongly on the surface effects. This study is helpful to characterize and measure the mechanical properties of soft materials through nanoindentation.
基金supported by the National Natural Science Foundation of China (Nos.51479108 and 51174196)the National Basic Research Program of China (No.2014CB046300)+1 种基金Shandong University of Science and Technology (No.2012KYTD104)Research Start-up Project of Shandong University of Science and Technology (No.2015RCJJ061)
文摘The rocks surrounding a roadway exhibit some special and complex phenomena with increasing depth of excavation in underground engineering.Quasi-static analysis cannot adequately explain these engineering problems.The computational model of a circular roadway considering the transient effect of excavation unloading is established for these problems.The time factor makes the solution of the problem difficult.Thus,the computational model is divided into a dynamic model and a static model.The Laplace integral transform and inverse transform are performed to solve the dynamic model and elasticity theory is used to analyze the static model.The results from an example show that circumferential stress increases and radial stress decreases with time.The stress difference becomes large gradually in this progress.The displacement increases with unloading time and decreases with the radial depth of surrounding rocks.It can be seen that the development trend of unloading and displacement is similar by comparing their rates.Finally,the results of ANSYS are used to verify the analytical solution.The contrast indicates that the laws of the two methods are basically in agreement.Thus,the analysis can provide a reference for further study.