The mean path length(MPL)of photons is a critical parameter to calculate tissue absorption coefficient as well as blood oxygenation using modified Beer-Lambert law,where in the differential path factor(DPF)is often as...The mean path length(MPL)of photons is a critical parameter to calculate tissue absorption coefficient as well as blood oxygenation using modified Beer-Lambert law,where in the differential path factor(DPF)is often assumed as constant over range of tissue absorption.By utilizing the Monte Carlo(MC)simulation of photon migrations in the leg,this study used four approaches to estimate MPL,and compared them with that determined by the MPL definition.The simulation results indicate that the DPF is remarkably affected by tissue absorption,at approximate 10% variation.A linear model is suggested to calculate MPL for measurements of tissue absorption as well as blood oxygenation using modified Beer-Lambert law.展开更多
Monte Carlo simulation of paths of a large number of impinging electrons in a multi-layered solid allows defining area of spreading electrons (A) to capture overall behavior of the solid. This parameter “A” follows ...Monte Carlo simulation of paths of a large number of impinging electrons in a multi-layered solid allows defining area of spreading electrons (A) to capture overall behavior of the solid. This parameter “A” follows power law with electron energy. Furthermore, change in critical energies, which are minimum energies loses corresponding to various electrons, as a function of variation in lateral distance also follows power law nature. This power law behavior could be an indicator of how strong self-organization a solid has which may be used in monitoring efficiency of device fabrication.展开更多
Attitude pursuit guidance law is suitable for low cost missiles.A strap-down seeker is used to achieve this guidance law.The additional angles of attack or sideslip caused by wind and by control system are considered ...Attitude pursuit guidance law is suitable for low cost missiles.A strap-down seeker is used to achieve this guidance law.The additional angles of attack or sideslip caused by wind and by control system are considered as two disturbing factors which make attitude pursuit law impossible.Therefore,general attitude pursuit guidance law did not account for this two disturbing factors,because with those disturbing factors,it is difficult to apply.To solve the problem,the principle of strap-down seeker detecting target is investigated,the mathematical control model is established,then a modified attitude pursuit guidance law which employs the angular correction for those two disturbing factors is presented.It is proved that the modified attitude pursuit guidance law is appropriated to both in the presence of the additional angle of attack or sideslip via the simulations with the mathematical control model and Monte-Carlo method.展开更多
We study the double ionization dynamics of a helium atom impacted by electrons with full-dimensional classical trajectory Monte Carlo simulation. The excess energy is chosen to cover a wide range of values from 5 e V ...We study the double ionization dynamics of a helium atom impacted by electrons with full-dimensional classical trajectory Monte Carlo simulation. The excess energy is chosen to cover a wide range of values from 5 e V to 1 ke V for comparative study. At the lowest excess energy, i.e., close to the double-ionization threshold, it is found that the projectile momentum is totally transferred to the recoil-ion while the residual energy is randomly partitioned among the three outgoing electrons, which are then most probably emitted with an equilateral triangle configuration. Our results agree well with experiments as compared with early quantum-mechanical calculation as well as classical simulation based on a two-dimensional Bohr's model. Furthermore, by mapping the final momentum vectors event by event into a Dalitz plot,we unambiguously demonstrate that the ergodicity has been reached and thus confirm a long-term scenario conceived by Wannier. The time scale for such few-body thermalization, from the initial nonequilibrium state to the final microcanonical distribution, is only about 100 attoseconds. Finally, we predict that, with the increase of the excess energy, the dominant emission configuration undergoes a transition from equilateral triangle to T-shape and finally to a co-linear mode. The associated signatures of such configuration transition in the electron–ion joint momentum spectrum and triple-electron angular distribution are also demonstrated.展开更多
基金Research Funds from North University of China(No.130087)
文摘The mean path length(MPL)of photons is a critical parameter to calculate tissue absorption coefficient as well as blood oxygenation using modified Beer-Lambert law,where in the differential path factor(DPF)is often assumed as constant over range of tissue absorption.By utilizing the Monte Carlo(MC)simulation of photon migrations in the leg,this study used four approaches to estimate MPL,and compared them with that determined by the MPL definition.The simulation results indicate that the DPF is remarkably affected by tissue absorption,at approximate 10% variation.A linear model is suggested to calculate MPL for measurements of tissue absorption as well as blood oxygenation using modified Beer-Lambert law.
文摘Monte Carlo simulation of paths of a large number of impinging electrons in a multi-layered solid allows defining area of spreading electrons (A) to capture overall behavior of the solid. This parameter “A” follows power law with electron energy. Furthermore, change in critical energies, which are minimum energies loses corresponding to various electrons, as a function of variation in lateral distance also follows power law nature. This power law behavior could be an indicator of how strong self-organization a solid has which may be used in monitoring efficiency of device fabrication.
文摘Attitude pursuit guidance law is suitable for low cost missiles.A strap-down seeker is used to achieve this guidance law.The additional angles of attack or sideslip caused by wind and by control system are considered as two disturbing factors which make attitude pursuit law impossible.Therefore,general attitude pursuit guidance law did not account for this two disturbing factors,because with those disturbing factors,it is difficult to apply.To solve the problem,the principle of strap-down seeker detecting target is investigated,the mathematical control model is established,then a modified attitude pursuit guidance law which employs the angular correction for those two disturbing factors is presented.It is proved that the modified attitude pursuit guidance law is appropriated to both in the presence of the additional angle of attack or sideslip via the simulations with the mathematical control model and Monte-Carlo method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12174034, 12047510, and 11822401)NSAF (Grant Nos. U1930402 and U1930403)。
文摘We study the double ionization dynamics of a helium atom impacted by electrons with full-dimensional classical trajectory Monte Carlo simulation. The excess energy is chosen to cover a wide range of values from 5 e V to 1 ke V for comparative study. At the lowest excess energy, i.e., close to the double-ionization threshold, it is found that the projectile momentum is totally transferred to the recoil-ion while the residual energy is randomly partitioned among the three outgoing electrons, which are then most probably emitted with an equilateral triangle configuration. Our results agree well with experiments as compared with early quantum-mechanical calculation as well as classical simulation based on a two-dimensional Bohr's model. Furthermore, by mapping the final momentum vectors event by event into a Dalitz plot,we unambiguously demonstrate that the ergodicity has been reached and thus confirm a long-term scenario conceived by Wannier. The time scale for such few-body thermalization, from the initial nonequilibrium state to the final microcanonical distribution, is only about 100 attoseconds. Finally, we predict that, with the increase of the excess energy, the dominant emission configuration undergoes a transition from equilateral triangle to T-shape and finally to a co-linear mode. The associated signatures of such configuration transition in the electron–ion joint momentum spectrum and triple-electron angular distribution are also demonstrated.