The effect of changing Be doping concentration in GaAs layer on the integrated photosensitivity for nega- tive-electron-affinity GaAs photocathodes is investigated. Two GaAs samples with the monolayer structure and th...The effect of changing Be doping concentration in GaAs layer on the integrated photosensitivity for nega- tive-electron-affinity GaAs photocathodes is investigated. Two GaAs samples with the monolayer structure and the muhilayer structure are grown by molecular beam epitaxy. The former has a constant Be concentration of 1 × 10^19 cm^-3, while the latter includes four layers with Be doping concentrations of 1 × 10^19, 7 × 10^18, 4 × 10^18, and 1 × 10^18 cm^-3 from the bottom to the surface. Negative-electron-affinity GaAs photocathodes are fabricated by exciting the sample surfaces with alternating input of Cs and O in the high vacuum system. The spectral response results measured by the on-line spectral response measurement system show that the integrated photosensitivity of the photocathode with the muhilayer structure enhanced by at least 50% as compared to that of the monolayer structure. This attributes to the improvement in the crystal quality and the increase in the surface escape probability. Different stress situations are observed on GaAs samples with monolayer structure and muhilayer structure, respectively.展开更多
The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the prepara-tion of scaffolds with goodfiber integrity is challenging,because scaffolds prepare...The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the prepara-tion of scaffolds with goodfiber integrity is challenging,because scaffolds prepared by traditional printing methods are prone tofiber cracking during solvent evaporation.Human skin has an excellent natural heat-management system,which helps to maintain a constant body tem-perature through perspiration or blood-vessel constriction.In this work,an electrohydrodynamic-jet 3D-printing method inspired by the thermal-management system of skin was developed.In this system,the evaporation of solvent in the printedfibers can be adjusted using the temperature-change rate of the substrate to prepare 3D structures with good structural integrity.To investigate the solvent evaporation and the interlayer bonding of thefibers,finite-element analysis simulations of a three-layer microscale structure were carried out.The results show that the solvent-evaporation path is from bottom to top,and the strain in the printed structure becomes smaller with a smaller temperature-change rate.Experimental results verified the accuracy of these simulation results,and a variety of complex 3D structures with high aspect ratios were printed.Microscale cracks were reduced to the nanoscale by adjusting the temperature-change rate from 2.5 to 0.5○C s-1.Opti-mized process parameters were selected to prepare a tissue engineering scaffold with high integrity.It was confirmed that this printed scaffold had good biocompatibility and could be used for bone-tissue regeneration.This simple andflexible 3D-printing method can also help with the preparation of a wide range of micro-and nanostructured sensors and actuators.展开更多
Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the ass...Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains.展开更多
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
Data protection in databases is critical for any organization,as unauthorized access or manipulation can have severe negative consequences.Intrusion detection systems are essential for keeping databases secure.Advance...Data protection in databases is critical for any organization,as unauthorized access or manipulation can have severe negative consequences.Intrusion detection systems are essential for keeping databases secure.Advancements in technology will lead to significant changes in the medical field,improving healthcare services through real-time information sharing.However,reliability and consistency still need to be solved.Safeguards against cyber-attacks are necessary due to the risk of unauthorized access to sensitive information and potential data corruption.Dis-ruptions to data items can propagate throughout the database,making it crucial to reverse fraudulent transactions without delay,especially in the healthcare industry,where real-time data access is vital.This research presents a role-based access control architecture for an anomaly detection technique.Additionally,the Structured Query Language(SQL)queries are stored in a new data structure called Pentaplet.These pentaplets allow us to maintain the correlation between SQL statements within the same transaction by employing the transaction-log entry information,thereby increasing detection accuracy,particularly for individuals within the company exhibiting unusual behavior.To identify anomalous queries,this system employs a supervised machine learning technique called Support Vector Machine(SVM).According to experimental findings,the proposed model performed well in terms of detection accuracy,achieving 99.92%through SVM with One Hot Encoding and Principal Component Analysis(PCA).展开更多
In order to investigate the correlation between reactor performance and the microorganisms,an integrated A/O reactor was operated for 72 days to treat diluted livestock wastewater.Chemical oxygen demand (COD) remova...In order to investigate the correlation between reactor performance and the microorganisms,an integrated A/O reactor was operated for 72 days to treat diluted livestock wastewater.Chemical oxygen demand (COD) removal efficiency increased from 79% to 94%,with total nitrogen (TN) removal efficiency from 37% to 50% (HRT 7.4 hr) when the influent COD and TN were ca.1500 mg/L and 95 mg/L,respectively,and the outlet COD concentration was less than 100 mg/L at the end.Microbial community was monitored during start-up period by denaturing gradient gel electrophoresis (DGGE) based on 16S rRNA gene.DGGE profiles showed that microbial community had changed significantly during the start-up and these shifts were in accordance with the reactor performance.UPGMA clustering analysis showed that 14 anaerobic samples fell into five main groups and so did the aerobic ones,but the grouping patterns were different.Phylogenetic analysis indicated that microbial populations in the anaerobic compartment belonged to Firmicutes,Proteobacteria,Chloroflexi and Bacteroidetes,while Proteobacteria,Bacteroidetes,Firmicutes,Verrucomicrobiae and Nitrospira were present in the aerobic compartment.In the anaerobic compartment,more fermentative and acetogenic bacteria were detected during the start-up while denitrifying bacteria faded away.Two functional populations such as Nitrospira defluvii and Dechloromonas denitrificans were observed when nitrogen removal was high,indicating that simultaneous nitrification and denitrification occurred in the aerobic compartment.展开更多
The finite element dynamic model for integrated structures containing distributed piezoelectric sensors and actuators ( S/As ) is formulated with a new piezoelectric plate bending element in this paper. The problem of...The finite element dynamic model for integrated structures containing distributed piezoelectric sensors and actuators ( S/As ) is formulated with a new piezoelectric plate bending element in this paper. The problem of active vibration control and suppression of integrated structures is investigated under constant gain negative velocity feedback control law. A general method for active vibration control and suppression of integrated structures is presented. Finally, numerical example is given to illustrate the validity of the method proposed in this paper.展开更多
A compact structured illumination chip based on integrated optics is proposed and fabricated on a silicon-on- insulator platform. Based on the simulation of Caussian beam interference, we adopt a chirped diffraction g...A compact structured illumination chip based on integrated optics is proposed and fabricated on a silicon-on- insulator platform. Based on the simulation of Caussian beam interference, we adopt a chirped diffraction grating to achieve a specific interference pattern. The experimental results match well with the simulations. The portability and flexibility of the structured illumination chip can be increased greatly through horizontal encapsulation. High levels of integration, compared with the conventional structured illumination approach, make this chip very compact, with a footprint of only around 1 mm2. The chip has no optical lenses and can be easily combined with a microfluidic system. These properties would make the chip very suitable for portable 3D scanner and compact super-resolution microscopy applications.展开更多
Vertical picking method is a predominate method used to harvest cotton crop.However,a vertical picking method may cause spindle bending of the cotton picker if spindles collide with stones on the cotton field.Thus,how...Vertical picking method is a predominate method used to harvest cotton crop.However,a vertical picking method may cause spindle bending of the cotton picker if spindles collide with stones on the cotton field.Thus,how to realize a precise height control of the cotton picker is a crucial issue to be solved.The objective of this study is to design a height control system to avoid the collision.To design it,the mathematical models are established first.Then a multi-objective optimization model represented by structure parameters and control parameters is proposed to take the pressure of chamber without piston,response time and displacement error of the height control system as the opti-mization objectives.An integrated optimization approach that combines optimization via simulation,particle swarm optimization and simulated annealing is proposed to solve the model.Simulation and experimental test results show that the proposed integrated optimization approach can not only reduce the pressure of chamber without piston,but also decrease the response time and displacement error of the height control system.展开更多
The integrated optimal design of mechanical and control system is discussed in terms of the performance requirement and configuration for the single arm flexible manipulator. By combination of dynamics of flexible str...The integrated optimal design of mechanical and control system is discussed in terms of the performance requirement and configuration for the single arm flexible manipulator. By combination of dynamics of flexible structure and control theory, a PD feedback control system, which minimizes the settling time, has been designed. Then, the viable region of poles of the PD dosed-loop control system is decided according to overshoot and the settling time, and an integrated optimal model of structure and control of single arm manipulator is presented. Finally, the parameters of structure and control system are simultaneously optimized with respect to objective function induding the moment of inertia and the control effort of system.展开更多
This research aims to provide a Structured Literature Review(SLR)concerning the role of Intellectual Capital(IC)in Integrated Reporting(IR).It analyses papers published in journals from business,management,and account...This research aims to provide a Structured Literature Review(SLR)concerning the role of Intellectual Capital(IC)in Integrated Reporting(IR).It analyses papers published in journals from business,management,and accounting area,from 2013 to 2021 with the purpose of pointing out relevant insights about the relationship between IC and IR.Despite that existing literature offers valuable contributions about IC,and the International Integrated Reporting Council included IC related issues among the aims and the fundamentals concepts of IR,this is a topic of growing interest that offers many avenues for further discussion.Analysing past and present literature,this study found that most of the papers use content analysis or a conceptual and critical approach.Moreover,three main paths emerged:about IC disclosure,about IC and IR as a field of research,about a practical concern of IR and IC.Moreover,it tries to frame a future research agenda;particularly,this paper emphasizes the need for further research about the importance of new technologies as they are considered to be the IC of modern organization.展开更多
This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements...This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements for displacement and stress are derived.An exponential transformation technique is introduced to accurately calculate the nearly singular integral,which is the key task of the boundary element simulation of thin-walled structures.Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework.Numerical results demonstrate that the present scheme is valid for modeⅢcrack problems of thin-walled structures with the thickness-to-length ratio in the microscale,even nanoscale,regime.展开更多
The number of traditionally excellent coastal lithologic nuclear power plants is limited.It is a trend to develop nuclear power plants on soil sites in inland areas.Therefore,the seismic safety and adaptability of non...The number of traditionally excellent coastal lithologic nuclear power plants is limited.It is a trend to develop nuclear power plants on soil sites in inland areas.Therefore,the seismic safety and adaptability of non-rock nuclear power plant(NPP)sites are the key concerns of nuclear safety researchers.Although the five site categories are clearly defined in the AP1000 design control documents,the effects of nuclear power five site conditions and soil nonlinearity on the seismic response characteristics of nuclear island buildings have not been systematically considered in previous related studies.In this study,targeting the AP1000 nuclear island structure as the research object,three-dimensional finite element models of a nuclear island structure at five types of sites(firm rock site(FR),soft rock site(SR),soft-to-medium soil site(SMS),upper bound soft-to-medium site(SMS-UB),and soft soil site(SS))are established.The partitioned analysis method of soil-structure interaction(PASSI)in the time-domain is used to investigate the effects of site hardness and nonlinearity on the acceleration,displacement,and acceleration response spectrum of the nuclear island structure under seismic excitation.The incremental equilibrium equation and explicit decoupling method are used to analyze the soil nonlinearity described by the Davidenkov model with simplified loading-reloading rules.The results show that,in the linear case,with the increase of site hardness,the peak ground acceleration(PGA)and the peak of acceleration response spectrum of the nuclear island structure increase except for the FR site,while the maximum displacement decreases.In nonlinear analysis,as the site hardness increases,the PGA,maximum displacement,and the peak of acceleration response spectrum of the nuclear island structure increase.The peak value of the acceleration response spectrum in the nonlinear case is greater than that in the linear case for FR,while smaller for SR and soil sites.The site nonlinearity reduces the peak values of the response spectrum for SR and soil sites much more as the site hardness decreases.The results of this study can provide a reference for design of nuclear island structures on soil and rock sites.展开更多
Integrity and disparity are two of the basic characteristics implied in the scientific connotation of the physical environment as a material system. From a dialectical materialistic point of view the physical characte...Integrity and disparity are two of the basic characteristics implied in the scientific connotation of the physical environment as a material system. From a dialectical materialistic point of view the physical character of geographical environment of the earth surface is the unity in diversity. It is on such grounds that the two basic characteristics were put forth by the author in his monograph 'Physical Structure of South American Geographical Environment' as the underlying theme. This holds true for the hierarchy of physical regions. For instance, the physical environment of the earth surface in unity behaves as a huge whole, yet, in differentiation into continents, it displays disparity; each continent differs from others and becomes an integrity in its own right. The same is true of regions of lower levels. In the case of generality and individuality of regional types and their constituent distributive areas in different continents, the same relationship exists among them. Owing to similar origin展开更多
A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2...A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2011-2013. By combining the principle of hierarchical decomposition into D&L method, a hierarchical decomposition model for multilevel SDA is obtained. The developed hierarchical IO-SDA model would provide consistent results and need less computation effort compared with the traditional SDA model. The decomposition results of the steel plant suggest that the technology improvement and reduced steel final demand are two major reasons for declined total energy consumption. The technical improvements of blast furnaces, basic oxygen furnaces, the power plant and the by-products utilization level have contributed mostly in reducing energy consumption. A major retrofit of ancillary process units and solving fuel substitution problem in the sinter plant and blast furnace are important for further energy saving. Besides the empirical results, this work also discussed that why and how hierarchical SDA can be applied in a process-level decomposition analysis of aggregated indicators.展开更多
Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal m...Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging.In this study,we propose a novel laserengraved surface roughening strategy for various flexible substrates.This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling.By leveraging these unique optical properties,we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss.This sweat loss sensor is capable of a volume resolution of 0.5µL and a total volume capacity of 11µL,and can be customized to meet different performance requirements.Moreover,we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board.This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk.Finally,we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies.展开更多
By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-f...By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.展开更多
A new isospectral problem and the corresponding hierarchy of nonlinear evolution equations is presented. As a reduction, the well-known MKdV equation is obtained. It is shown that the hierarchy of equations is integra...A new isospectral problem and the corresponding hierarchy of nonlinear evolution equations is presented. As a reduction, the well-known MKdV equation is obtained. It is shown that the hierarchy of equations is integrable in Liouville' s sense and possesses Bi-Hamiltonian structure. Under the constraint between the potentials and eigenfunctions, the eigenvalue problem can be nonlinearized as a finite dimensional completely integrable system.展开更多
Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplin...Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplings of the multi-component KN hierarchy are worked out respectively. Finally, Hamiltonian structures of obtained system are given by quadratic-form identity.展开更多
In this paper, a new nonlinear integrable coupling system of the soliton hierarchy is presented. Prom the Lax pairs, the coupled KdV equations are constructed successfully. Based on the prolongation method of Wahlquis...In this paper, a new nonlinear integrable coupling system of the soliton hierarchy is presented. Prom the Lax pairs, the coupled KdV equations are constructed successfully. Based on the prolongation method of Wahlquist and Estabrook, we study the prolongation structure of the nonlinear integrable couplings of the KdV equation.展开更多
文摘The effect of changing Be doping concentration in GaAs layer on the integrated photosensitivity for nega- tive-electron-affinity GaAs photocathodes is investigated. Two GaAs samples with the monolayer structure and the muhilayer structure are grown by molecular beam epitaxy. The former has a constant Be concentration of 1 × 10^19 cm^-3, while the latter includes four layers with Be doping concentrations of 1 × 10^19, 7 × 10^18, 4 × 10^18, and 1 × 10^18 cm^-3 from the bottom to the surface. Negative-electron-affinity GaAs photocathodes are fabricated by exciting the sample surfaces with alternating input of Cs and O in the high vacuum system. The spectral response results measured by the on-line spectral response measurement system show that the integrated photosensitivity of the photocathode with the muhilayer structure enhanced by at least 50% as compared to that of the monolayer structure. This attributes to the improvement in the crystal quality and the increase in the surface escape probability. Different stress situations are observed on GaAs samples with monolayer structure and muhilayer structure, respectively.
基金supported by the National Natural Science Foundation of China(Grant No.52105577)the Natural Science Foundation of Zhejiang Province(Grant Nos.LQ22E050001 and LQ21E080007)+1 种基金the Natural Science Foundation of Ningbo(Grant Nos.2021J088 and 2023J376)the Ningbo Yongjiang Talent Introduction Program(Grant No.2021A-137-G).
文摘The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the prepara-tion of scaffolds with goodfiber integrity is challenging,because scaffolds prepared by traditional printing methods are prone tofiber cracking during solvent evaporation.Human skin has an excellent natural heat-management system,which helps to maintain a constant body tem-perature through perspiration or blood-vessel constriction.In this work,an electrohydrodynamic-jet 3D-printing method inspired by the thermal-management system of skin was developed.In this system,the evaporation of solvent in the printedfibers can be adjusted using the temperature-change rate of the substrate to prepare 3D structures with good structural integrity.To investigate the solvent evaporation and the interlayer bonding of thefibers,finite-element analysis simulations of a three-layer microscale structure were carried out.The results show that the solvent-evaporation path is from bottom to top,and the strain in the printed structure becomes smaller with a smaller temperature-change rate.Experimental results verified the accuracy of these simulation results,and a variety of complex 3D structures with high aspect ratios were printed.Microscale cracks were reduced to the nanoscale by adjusting the temperature-change rate from 2.5 to 0.5○C s-1.Opti-mized process parameters were selected to prepare a tissue engineering scaffold with high integrity.It was confirmed that this printed scaffold had good biocompatibility and could be used for bone-tissue regeneration.This simple andflexible 3D-printing method can also help with the preparation of a wide range of micro-and nanostructured sensors and actuators.
基金This work was partly funded by the National Key R&D Project of China(2021YFB3400704)China State Railway Group(K2022J004 and N2023J011)China Railway Chengdu Group(CJ23018).
文摘Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains.
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.
基金thankful to the Dean of Scientific Research at Najran University for funding this work under the Research Groups Funding Program,Grant Code(NU/RG/SERC/12/6).
文摘Data protection in databases is critical for any organization,as unauthorized access or manipulation can have severe negative consequences.Intrusion detection systems are essential for keeping databases secure.Advancements in technology will lead to significant changes in the medical field,improving healthcare services through real-time information sharing.However,reliability and consistency still need to be solved.Safeguards against cyber-attacks are necessary due to the risk of unauthorized access to sensitive information and potential data corruption.Dis-ruptions to data items can propagate throughout the database,making it crucial to reverse fraudulent transactions without delay,especially in the healthcare industry,where real-time data access is vital.This research presents a role-based access control architecture for an anomaly detection technique.Additionally,the Structured Query Language(SQL)queries are stored in a new data structure called Pentaplet.These pentaplets allow us to maintain the correlation between SQL statements within the same transaction by employing the transaction-log entry information,thereby increasing detection accuracy,particularly for individuals within the company exhibiting unusual behavior.To identify anomalous queries,this system employs a supervised machine learning technique called Support Vector Machine(SVM).According to experimental findings,the proposed model performed well in terms of detection accuracy,achieving 99.92%through SVM with One Hot Encoding and Principal Component Analysis(PCA).
基金supported by the National Postdoctoral Fundation of China (No. 20070410881)the National Natural Science Fundation of China (No. 50878063)the National Natural Science Key Fundation of China (No.50638020)
文摘In order to investigate the correlation between reactor performance and the microorganisms,an integrated A/O reactor was operated for 72 days to treat diluted livestock wastewater.Chemical oxygen demand (COD) removal efficiency increased from 79% to 94%,with total nitrogen (TN) removal efficiency from 37% to 50% (HRT 7.4 hr) when the influent COD and TN were ca.1500 mg/L and 95 mg/L,respectively,and the outlet COD concentration was less than 100 mg/L at the end.Microbial community was monitored during start-up period by denaturing gradient gel electrophoresis (DGGE) based on 16S rRNA gene.DGGE profiles showed that microbial community had changed significantly during the start-up and these shifts were in accordance with the reactor performance.UPGMA clustering analysis showed that 14 anaerobic samples fell into five main groups and so did the aerobic ones,but the grouping patterns were different.Phylogenetic analysis indicated that microbial populations in the anaerobic compartment belonged to Firmicutes,Proteobacteria,Chloroflexi and Bacteroidetes,while Proteobacteria,Bacteroidetes,Firmicutes,Verrucomicrobiae and Nitrospira were present in the aerobic compartment.In the anaerobic compartment,more fermentative and acetogenic bacteria were detected during the start-up while denitrifying bacteria faded away.Two functional populations such as Nitrospira defluvii and Dechloromonas denitrificans were observed when nitrogen removal was high,indicating that simultaneous nitrification and denitrification occurred in the aerobic compartment.
文摘The finite element dynamic model for integrated structures containing distributed piezoelectric sensors and actuators ( S/As ) is formulated with a new piezoelectric plate bending element in this paper. The problem of active vibration control and suppression of integrated structures is investigated under constant gain negative velocity feedback control law. A general method for active vibration control and suppression of integrated structures is presented. Finally, numerical example is given to illustrate the validity of the method proposed in this paper.
基金Supported by the National Natural Science Foundation of China under Grant No 61334008the National High-Technology Research and Development Program of China under Grant No 2015AA016904the Instrument Developing Project of the Chinese Academy of Sciences under Grant No YZ201301
文摘A compact structured illumination chip based on integrated optics is proposed and fabricated on a silicon-on- insulator platform. Based on the simulation of Caussian beam interference, we adopt a chirped diffraction grating to achieve a specific interference pattern. The experimental results match well with the simulations. The portability and flexibility of the structured illumination chip can be increased greatly through horizontal encapsulation. High levels of integration, compared with the conventional structured illumination approach, make this chip very compact, with a footprint of only around 1 mm2. The chip has no optical lenses and can be easily combined with a microfluidic system. These properties would make the chip very suitable for portable 3D scanner and compact super-resolution microscopy applications.
基金Supported by National Natural Science Foundation of China(Grant No.51905448)Chongqing Technology Innovation and Application Program of China(Grant No.cstc2018jszx-cyzdX0183)Fundamental Research Funds for the Central Universities of China(Grant No.SWU119060).
文摘Vertical picking method is a predominate method used to harvest cotton crop.However,a vertical picking method may cause spindle bending of the cotton picker if spindles collide with stones on the cotton field.Thus,how to realize a precise height control of the cotton picker is a crucial issue to be solved.The objective of this study is to design a height control system to avoid the collision.To design it,the mathematical models are established first.Then a multi-objective optimization model represented by structure parameters and control parameters is proposed to take the pressure of chamber without piston,response time and displacement error of the height control system as the opti-mization objectives.An integrated optimization approach that combines optimization via simulation,particle swarm optimization and simulated annealing is proposed to solve the model.Simulation and experimental test results show that the proposed integrated optimization approach can not only reduce the pressure of chamber without piston,but also decrease the response time and displacement error of the height control system.
文摘The integrated optimal design of mechanical and control system is discussed in terms of the performance requirement and configuration for the single arm flexible manipulator. By combination of dynamics of flexible structure and control theory, a PD feedback control system, which minimizes the settling time, has been designed. Then, the viable region of poles of the PD dosed-loop control system is decided according to overshoot and the settling time, and an integrated optimal model of structure and control of single arm manipulator is presented. Finally, the parameters of structure and control system are simultaneously optimized with respect to objective function induding the moment of inertia and the control effort of system.
文摘This research aims to provide a Structured Literature Review(SLR)concerning the role of Intellectual Capital(IC)in Integrated Reporting(IR).It analyses papers published in journals from business,management,and accounting area,from 2013 to 2021 with the purpose of pointing out relevant insights about the relationship between IC and IR.Despite that existing literature offers valuable contributions about IC,and the International Integrated Reporting Council included IC related issues among the aims and the fundamentals concepts of IR,this is a topic of growing interest that offers many avenues for further discussion.Analysing past and present literature,this study found that most of the papers use content analysis or a conceptual and critical approach.Moreover,three main paths emerged:about IC disclosure,about IC and IR as a field of research,about a practical concern of IR and IC.Moreover,it tries to frame a future research agenda;particularly,this paper emphasizes the need for further research about the importance of new technologies as they are considered to be the IC of modern organization.
基金supported by the National Natural Science Foundation of China(No.11802165)the China Postdoctoral Science Foundation(Grant No.2019M650158).
文摘This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements for displacement and stress are derived.An exponential transformation technique is introduced to accurately calculate the nearly singular integral,which is the key task of the boundary element simulation of thin-walled structures.Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework.Numerical results demonstrate that the present scheme is valid for modeⅢcrack problems of thin-walled structures with the thickness-to-length ratio in the microscale,even nanoscale,regime.
基金National Natural Science Foundation of China under Grant Nos.51978337 and U2039209。
文摘The number of traditionally excellent coastal lithologic nuclear power plants is limited.It is a trend to develop nuclear power plants on soil sites in inland areas.Therefore,the seismic safety and adaptability of non-rock nuclear power plant(NPP)sites are the key concerns of nuclear safety researchers.Although the five site categories are clearly defined in the AP1000 design control documents,the effects of nuclear power five site conditions and soil nonlinearity on the seismic response characteristics of nuclear island buildings have not been systematically considered in previous related studies.In this study,targeting the AP1000 nuclear island structure as the research object,three-dimensional finite element models of a nuclear island structure at five types of sites(firm rock site(FR),soft rock site(SR),soft-to-medium soil site(SMS),upper bound soft-to-medium site(SMS-UB),and soft soil site(SS))are established.The partitioned analysis method of soil-structure interaction(PASSI)in the time-domain is used to investigate the effects of site hardness and nonlinearity on the acceleration,displacement,and acceleration response spectrum of the nuclear island structure under seismic excitation.The incremental equilibrium equation and explicit decoupling method are used to analyze the soil nonlinearity described by the Davidenkov model with simplified loading-reloading rules.The results show that,in the linear case,with the increase of site hardness,the peak ground acceleration(PGA)and the peak of acceleration response spectrum of the nuclear island structure increase except for the FR site,while the maximum displacement decreases.In nonlinear analysis,as the site hardness increases,the PGA,maximum displacement,and the peak of acceleration response spectrum of the nuclear island structure increase.The peak value of the acceleration response spectrum in the nonlinear case is greater than that in the linear case for FR,while smaller for SR and soil sites.The site nonlinearity reduces the peak values of the response spectrum for SR and soil sites much more as the site hardness decreases.The results of this study can provide a reference for design of nuclear island structures on soil and rock sites.
文摘Integrity and disparity are two of the basic characteristics implied in the scientific connotation of the physical environment as a material system. From a dialectical materialistic point of view the physical character of geographical environment of the earth surface is the unity in diversity. It is on such grounds that the two basic characteristics were put forth by the author in his monograph 'Physical Structure of South American Geographical Environment' as the underlying theme. This holds true for the hierarchy of physical regions. For instance, the physical environment of the earth surface in unity behaves as a huge whole, yet, in differentiation into continents, it displays disparity; each continent differs from others and becomes an integrity in its own right. The same is true of regions of lower levels. In the case of generality and individuality of regional types and their constituent distributive areas in different continents, the same relationship exists among them. Owing to similar origin
基金Project(2012GK2025)supported by Science-Technology Plan Foundation of Hunan Province,ChinaProject(2013zzts039)supported by the Fundamental Research Funds for Central South University,China
文摘A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2011-2013. By combining the principle of hierarchical decomposition into D&L method, a hierarchical decomposition model for multilevel SDA is obtained. The developed hierarchical IO-SDA model would provide consistent results and need less computation effort compared with the traditional SDA model. The decomposition results of the steel plant suggest that the technology improvement and reduced steel final demand are two major reasons for declined total energy consumption. The technical improvements of blast furnaces, basic oxygen furnaces, the power plant and the by-products utilization level have contributed mostly in reducing energy consumption. A major retrofit of ancillary process units and solving fuel substitution problem in the sinter plant and blast furnace are important for further energy saving. Besides the empirical results, this work also discussed that why and how hierarchical SDA can be applied in a process-level decomposition analysis of aggregated indicators.
基金support from the National Natural Science Foundation of China(No.62174152)。
文摘Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging.In this study,we propose a novel laserengraved surface roughening strategy for various flexible substrates.This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling.By leveraging these unique optical properties,we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss.This sweat loss sensor is capable of a volume resolution of 0.5µL and a total volume capacity of 11µL,and can be customized to meet different performance requirements.Moreover,we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board.This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk.Finally,we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101Key Disciplines of Shanghai Municipality (S30104)
文摘By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.
文摘A new isospectral problem and the corresponding hierarchy of nonlinear evolution equations is presented. As a reduction, the well-known MKdV equation is obtained. It is shown that the hierarchy of equations is integrable in Liouville' s sense and possesses Bi-Hamiltonian structure. Under the constraint between the potentials and eigenfunctions, the eigenvalue problem can be nonlinearized as a finite dimensional completely integrable system.
文摘Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplings of the multi-component KN hierarchy are worked out respectively. Finally, Hamiltonian structures of obtained system are given by quadratic-form identity.
基金Project supported by the Scientific Research Fundation of the Education Department of Liaoning Province,China(GrantNo.L2010513)the China Postdoctoral Science Foundation(Grant No.2011M500404)
文摘In this paper, a new nonlinear integrable coupling system of the soliton hierarchy is presented. Prom the Lax pairs, the coupled KdV equations are constructed successfully. Based on the prolongation method of Wahlquist and Estabrook, we study the prolongation structure of the nonlinear integrable couplings of the KdV equation.