Designing and optimizing complex scientific code for new computing architectures is a challenging task. To address this issue in the E3SM land model (ELM) development, we developed a software tool called SPEL, which f...Designing and optimizing complex scientific code for new computing architectures is a challenging task. To address this issue in the E3SM land model (ELM) development, we developed a software tool called SPEL, which facilitates code generation, verification, and performance tuning using compiler directives within a Function Unit Test framework. In this paper, we present a SPEL extension that leverages the version control system (e.g., Git) to autonomous code generation and demonstrate its application to continuous code integration and development of the ELM software system. The study can benefit the scientific software development community.展开更多
A Lagrangian compatible radiation hydrodynamic algorithm and the nuclear dynamics computing module are developed and implemented in the LARED Integration code, which is a radiation hydrodynamic code based on the 2-D c...A Lagrangian compatible radiation hydrodynamic algorithm and the nuclear dynamics computing module are developed and implemented in the LARED Integration code, which is a radiation hydrodynamic code based on the 2-D cylindrical coordinates for the numerical simulation of the indirect-drive Inertial Confined Fusion. A number of 1-D and 2-D ignition implosion numerical simulations by using the improved LARED Integration code (ILARED) are presented which show that the 1-D numerical results are consistent with those computed by the 1-D radiation hydrodynamic code RDMG, while the simulation results of the 2-D low-mode radiative asymmetry and hydrodynamic instability growth,according to the physical analysis and anticipation, are satisfactory. The capsules driven by the sources from SGII experiments are also simulated by ILARED, and the fuel shapes agree well with the experimental results. The numerical simulations demonstrate that ILARED can be used in the simulation of the 1-D and 2-D ignition capsule implosion using the multi-group diffusion model for radiation.展开更多
文摘Designing and optimizing complex scientific code for new computing architectures is a challenging task. To address this issue in the E3SM land model (ELM) development, we developed a software tool called SPEL, which facilitates code generation, verification, and performance tuning using compiler directives within a Function Unit Test framework. In this paper, we present a SPEL extension that leverages the version control system (e.g., Git) to autonomous code generation and demonstrate its application to continuous code integration and development of the ELM software system. The study can benefit the scientific software development community.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10901021,91130002,11126134and11105013the China Academy of Engineering Physics Project under Grant No.2012A0202010+1 种基金the National High Technology Research and Development Program of China under Grant No.2012AA01A303the National Hi-Tech Inertial Confinement Fusion Committee of China
文摘A Lagrangian compatible radiation hydrodynamic algorithm and the nuclear dynamics computing module are developed and implemented in the LARED Integration code, which is a radiation hydrodynamic code based on the 2-D cylindrical coordinates for the numerical simulation of the indirect-drive Inertial Confined Fusion. A number of 1-D and 2-D ignition implosion numerical simulations by using the improved LARED Integration code (ILARED) are presented which show that the 1-D numerical results are consistent with those computed by the 1-D radiation hydrodynamic code RDMG, while the simulation results of the 2-D low-mode radiative asymmetry and hydrodynamic instability growth,according to the physical analysis and anticipation, are satisfactory. The capsules driven by the sources from SGII experiments are also simulated by ILARED, and the fuel shapes agree well with the experimental results. The numerical simulations demonstrate that ILARED can be used in the simulation of the 1-D and 2-D ignition capsule implosion using the multi-group diffusion model for radiation.