In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
Assessing the reliability of integrated electricity and gas systems has become an important issue due to the strong dependence of these energy networks through the power-to-gas(P2G)and combined heat and power(CHP)tech...Assessing the reliability of integrated electricity and gas systems has become an important issue due to the strong dependence of these energy networks through the power-to-gas(P2G)and combined heat and power(CHP)technologies.The current work,initially,presents a detailed energy flow model for the integrated power and natural gas system in light of the P2G and CHP technologies.Considering the simultaneous load flow of networks,a contingency analysis procedure is proposed,and reliability is assessed through sequential Monte Carlo simulations.The current study examines the effect of independent and dependent operation of energy networks on the reliability of the systems.In particular,the effect of employing both P2G and CHP technologies on reliability criteria is evaluated.In addition,a series of sensitivity analysis are performed on the size and site of these technologies to investigate their effects on system reliability.The proposed method is implemented on an integrated IEEE 24-bus electrical power system and 20-node Belgian natural gas system.The simulation procedure certifies the proposed method for reliability assessment is practical and applicable.In addition,the results prove connection between energy networks through P2G and CHP technologies can improve reliability of networks if the site and size of technologies are properly determined.展开更多
As power to gas(P2 G) technology gradually matures, the coupling between electricity networks and natural gas networks should ideally evolve synergistically.With the intent of characterizing market behaviors of integr...As power to gas(P2 G) technology gradually matures, the coupling between electricity networks and natural gas networks should ideally evolve synergistically.With the intent of characterizing market behaviors of integrated electric power and natural gas networks(IPGNs)with P2 G facilities, this paper establishes a steady-state model of P2 G and constructs optimal dispatch models of an electricity network and a natural gas network separately. In addition, a concept of slack energy flow(SEF) is proposed as a tool for coordinated optimal dispatch between the two networks. To study how the market pricing mechanism affects coordinated optimal dispatch in an IPGN, a market equilibrium-solving model for an IPGN is constructed according to game theory, with a solution based on the Nikaido-Isoda function. Case studies are conducted on a joint model that combines the modified IEEE 118-node electricity network and the Belgian 20-node gas network.The results show that if the game between an electric power company and a natural gas company reaches market equilibrium, not only can both companies maximize their profits, but also the coordinated operation of the coupling units, i.e., gas turbines and P2 G facilities, will contribute more to renewable energy utilization and carbon emission reduction.展开更多
The wide utilization of gas-fired generation and the rapid development of power-to-gas technologies have led to the intensified integration of electricity and gas systems.The random failures of components in either el...The wide utilization of gas-fired generation and the rapid development of power-to-gas technologies have led to the intensified integration of electricity and gas systems.The random failures of components in either electricity or gas system may have a considerable impact on the reliabilities of both systems.Therefore,it is necessary to evaluate the reliabilities of electricity and gas systems considering their integration.In this paper,a novel reliability evaluation method for integrated electricity-gas systems(IEGSs)is proposed.First,reliability network equivalents are utilized to represent reliability models of gas-fired generating units,gas sources(GSs),power-to-gas facilities,and other conventional generating units in IEGS.A contingency management schema is then developed considering the coupling between electricity and gas systems based on an optimal power flow technique.Finally,the time-sequential Monte Carlo simulation approach is used to model the chronological characteristics of the corresponding reliability network equivalents.The proposed method is capable to evaluate customers’reliabilities in IEGS,which is illustrated on an integrated IEEE Reliability Test System and Belgium gas transmission system.展开更多
The traffic and user have significant impacts on the electric vehicle(EV)charging load but are not considered in the existing research.We propose a novel integrated simulation framework considering the traffic,the use...The traffic and user have significant impacts on the electric vehicle(EV)charging load but are not considered in the existing research.We propose a novel integrated simulation framework considering the traffic,the user,and power grid as well as the EV traveling,parking and charging based on cellular automaton(CA).The traffic is modeled by the traffic module of the proposed framework based on CA,while the power grid and user are modeled in the EV charging module.The traffic flow,user’s charging preference,user’s charging satisfaction,and the total supply capability(TSC)in the surveyed region are considered in the proposed framework.Two cases are carried out to show the interactions between the user and power grid.It is shown that the proposed framework can accurately simulate the interactions among traffic situation,user's behavior and TSC,which are significantly lacking in the existing research.The proposed framework is scalable in considering additional interrelated elements.展开更多
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
文摘Assessing the reliability of integrated electricity and gas systems has become an important issue due to the strong dependence of these energy networks through the power-to-gas(P2G)and combined heat and power(CHP)technologies.The current work,initially,presents a detailed energy flow model for the integrated power and natural gas system in light of the P2G and CHP technologies.Considering the simultaneous load flow of networks,a contingency analysis procedure is proposed,and reliability is assessed through sequential Monte Carlo simulations.The current study examines the effect of independent and dependent operation of energy networks on the reliability of the systems.In particular,the effect of employing both P2G and CHP technologies on reliability criteria is evaluated.In addition,a series of sensitivity analysis are performed on the size and site of these technologies to investigate their effects on system reliability.The proposed method is implemented on an integrated IEEE 24-bus electrical power system and 20-node Belgian natural gas system.The simulation procedure certifies the proposed method for reliability assessment is practical and applicable.In addition,the results prove connection between energy networks through P2G and CHP technologies can improve reliability of networks if the site and size of technologies are properly determined.
基金supported by the National Natural Science Foundation of China(No.51377060)the Major Consulting Program of Chinese Academy of Engineering(No.2015-ZD-09-09)
文摘As power to gas(P2 G) technology gradually matures, the coupling between electricity networks and natural gas networks should ideally evolve synergistically.With the intent of characterizing market behaviors of integrated electric power and natural gas networks(IPGNs)with P2 G facilities, this paper establishes a steady-state model of P2 G and constructs optimal dispatch models of an electricity network and a natural gas network separately. In addition, a concept of slack energy flow(SEF) is proposed as a tool for coordinated optimal dispatch between the two networks. To study how the market pricing mechanism affects coordinated optimal dispatch in an IPGN, a market equilibrium-solving model for an IPGN is constructed according to game theory, with a solution based on the Nikaido-Isoda function. Case studies are conducted on a joint model that combines the modified IEEE 118-node electricity network and the Belgian 20-node gas network.The results show that if the game between an electric power company and a natural gas company reaches market equilibrium, not only can both companies maximize their profits, but also the coordinated operation of the coupling units, i.e., gas turbines and P2 G facilities, will contribute more to renewable energy utilization and carbon emission reduction.
基金supported by National Natural Science Foundation of China(No.71871200).
文摘The wide utilization of gas-fired generation and the rapid development of power-to-gas technologies have led to the intensified integration of electricity and gas systems.The random failures of components in either electricity or gas system may have a considerable impact on the reliabilities of both systems.Therefore,it is necessary to evaluate the reliabilities of electricity and gas systems considering their integration.In this paper,a novel reliability evaluation method for integrated electricity-gas systems(IEGSs)is proposed.First,reliability network equivalents are utilized to represent reliability models of gas-fired generating units,gas sources(GSs),power-to-gas facilities,and other conventional generating units in IEGS.A contingency management schema is then developed considering the coupling between electricity and gas systems based on an optimal power flow technique.Finally,the time-sequential Monte Carlo simulation approach is used to model the chronological characteristics of the corresponding reliability network equivalents.The proposed method is capable to evaluate customers’reliabilities in IEGS,which is illustrated on an integrated IEEE Reliability Test System and Belgium gas transmission system.
基金This work was supported by the National Natural Science Foundation of China(No.51936003).
文摘The traffic and user have significant impacts on the electric vehicle(EV)charging load but are not considered in the existing research.We propose a novel integrated simulation framework considering the traffic,the user,and power grid as well as the EV traveling,parking and charging based on cellular automaton(CA).The traffic is modeled by the traffic module of the proposed framework based on CA,while the power grid and user are modeled in the EV charging module.The traffic flow,user’s charging preference,user’s charging satisfaction,and the total supply capability(TSC)in the surveyed region are considered in the proposed framework.Two cases are carried out to show the interactions between the user and power grid.It is shown that the proposed framework can accurately simulate the interactions among traffic situation,user's behavior and TSC,which are significantly lacking in the existing research.The proposed framework is scalable in considering additional interrelated elements.