Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading fau...Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method.展开更多
Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model...Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model considering P2G and carbon capture systems,and a two-stage robust optimization model of the electricity-heat-gascold integrated energy system was developed.First,a CHP model considering the P2G and carbon capture system was established,and the electric-thermal coupling characteristics and P2G capacity constraints of the model were derived,which proved that the model could weaken the electric-thermal coupling characteristics,increase the electric power regulation range,and reduce carbon emissions.Subsequently,a two-stage robust optimal scheduling model of an IES was constructed,in which the objective function in the day-ahead scheduling stage was to minimize the start-up and shutdown costs.The objective function in the real-time scheduling stage was to minimize the equipment operating costs,carbon emission costs,wind curtailment,and solar curtailment costs,considering multiple uncertainties.Finally,after the objective function is linearized with a ψ-piecewise method,the model is solved based on the C&CG algorithm.Simulation results show that the proposed model can effectively absorb renewable energy and reduce the total cost of the system.展开更多
For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving e...For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.展开更多
Combined heat and electricity operation with variable mass flow rates promotes flexibility,economy,and sustainability through synergies between electric power systems(EPSs)and district heating systems(DHSs).Such combi...Combined heat and electricity operation with variable mass flow rates promotes flexibility,economy,and sustainability through synergies between electric power systems(EPSs)and district heating systems(DHSs).Such combined operation presents a highly nonlinear and nonconvex optimization problem,mainly due to the bilinear terms in the heat flow model—that is,the product of the mass flow rate and the nodal temperature.Existing methods,such as nonlinear optimization,generalized Benders decomposition,and convex relaxation,still present challenges in achieving a satisfactory performance in terms of solution quality and computational efficiency.To resolve this problem,we herein first reformulate the district heating network model through an equivalent transformation and variable substitution.The reformulated model has only one set of nonconvex constraints with reduced bilinear terms,and the remaining constraints are linear.Such a reformulation not only ensures optimality,but also accelerates the solving process.To relax the remaining bilinear constraints,we then apply McCormick envelopes and obtain an objective lower bound of the reformulated model.To improve the quality of the McCormick relaxation,we employ a piecewise McCormick technique that partitions the domain of one of the variables of the bilinear terms into several disjoint regions in order to derive strengthened lower and upper bounds of the partitioned variables.We propose a heuristic tightening method to further constrict the strengthened bounds derived from the piecewise McCormick technique and recover a nearby feasible solution.Case studies show that,compared with the interior point method and the method implemented in a global bilinear solver,the proposed tightening McCormick method quickly solves the heat–electricity operation problem with an acceptable feasibility check and optimality.展开更多
In view of the Three North areas existing wind power absorption and environment pollution problems,the previous scholars have improved the wind abandon problem by adding electrothermal coupling equipment or optimizing...In view of the Three North areas existing wind power absorption and environment pollution problems,the previous scholars have improved the wind abandon problem by adding electrothermal coupling equipment or optimizing power grid operation.In this paper,an electrothermal integrated energy system including heat pump and thermal storage units was proposed.The scheduling model was based on the load data and the output characteristics of power units,each power unit capacity was programmed without constraints,and the proposed scheduling model was compared with the traditional combined heat and power scheduling model.Results showed that the investment and pollutant discharge of the system was reduced respectively.Wind power was fully absorbed.Compared with the traditional thermal power unit,the proportion of the output was significantly decreased by the proposed model.The proposed system could provide a new prospect for wind power absorption and environment protection.展开更多
Observability analysis(OA)is vital to obtaining the available input measurements of state estimation(SE)in an integrated electricity and heating system(IEHS).Considering the thermal quasi-dynamics in pipelines,the mea...Observability analysis(OA)is vital to obtaining the available input measurements of state estimation(SE)in an integrated electricity and heating system(IEHS).Considering the thermal quasi-dynamics in pipelines,the measurement equations in heating systems are dependent on the estimated results,leading to an interdependency between OA and SE.Conventional OA methods require measurement equations be known exactly before SE is performed,and they are not applicable to IEHSs.To bridge this gap,a scenario-based OA scheme for IEHSs is devised that yields reliable analysis results for a predefined set of time-delay scenarios to cope with this interdependency.As its core procedure,the observable state identification and observability restoration are formulated in terms of integer linear programming.Numerical tests are conducted to demonstrate the validity and superiority of the proposed formulation.展开更多
Taking the planning and major architectural design projects of Anqing Children Welfare Home for example,through the research on categories and each component of solar water heating system,the paper discussed strategie...Taking the planning and major architectural design projects of Anqing Children Welfare Home for example,through the research on categories and each component of solar water heating system,the paper discussed strategies and methods to realize solar energy and architectural integration design in the climate condition and location environment of Anhui Province.展开更多
In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large commun...In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system.展开更多
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
In recent years, Combined electro-thermal system has developed rapidly. In order to provide the initial data for the analysis of the combined electro-thermal system, a practical energy flow calculation method for the ...In recent years, Combined electro-thermal system has developed rapidly. In order to provide the initial data for the analysis of the combined electro-thermal system, a practical energy flow calculation method for the combined electro-thermal system is proposed in this paper. Based on the detailed analysis of the topology structure of the heating network and its hydraulic and thermodynamic model, the forward-backward sweep method for the heat flow of the heating network is established, which is more suitable for the actual radial heating network. The electric and thermal coupling model for heating source, such as thermoelectric unit and electric boiler is established, and the heat flow of heating network and the power flow of power grid are calculated orderly, thus a fast calculation method for the combined electro-thermal system is formed. What’s more, a combined electro-thermal system with two-stage peak-shaving electric boiler is used as the example system. This paper validates the effectiveness and rapidity of this method through the example system, and analyzes the influence for the energy flow of combined electro-thermal system caused by the operating parameters such as the installation location of electric boiler, the outlet water temperature of heat source and the outlet flow rate, etc.展开更多
A generalized steady-state model is being developed for an internal heat integrated distillation column (IHIDiC). A procedure incorporating the Newton-Raphson method is devised for solving the model equations. Separat...A generalized steady-state model is being developed for an internal heat integrated distillation column (IHIDiC). A procedure incorporating the Newton-Raphson method is devised for solving the model equations. Separation of an ethanol-water binary mixture is simulated and analyzed with the model. Two pinch points are found within the process, making the separation extremely difficult and expensive. Two sharp fronts in the temperature and the composition profiles are being observed. With the introduction of heat integration, satisfactory separation may be obtained in a limited number of stages with lower reflux ratios. Increasing the pressure difference between the rectifying and the stripping sections, however, would bring about a reduced relative volatility between the two components involved, creating adverse separation performances. It is obvious that optimization of the IHIDiC is of prime importance.展开更多
The PRO/Ⅱ process simulation software was applied to carry out simulated calculation of the aromatics fractionation unit and the heat integrated rectification process was proposed for the aromatics fractionation sect...The PRO/Ⅱ process simulation software was applied to carry out simulated calculation of the aromatics fractionation unit and the heat integrated rectification process was proposed for the aromatics fractionation section of the 1.0 Mt/a toluene disproportionation unit at the Zhenhai Refining and Chemical Company. The optimized operating parameters were obtained through the energy utilization analysis,process simulation,heat exchanger calculations and comparisons of utility consumption. The operation of commercialized unit has revealed that the design parameters of each rectification column were consistent with the operation results,and the utility consumption was about 47% lower than the traditional heat integrated process.展开更多
This paper proposes a neural network based feasible region approximation model of a district heating system(DHS),and it is intended to be used for optimal operation of integrated electricity and heating system(IEHS)co...This paper proposes a neural network based feasible region approximation model of a district heating system(DHS),and it is intended to be used for optimal operation of integrated electricity and heating system(IEHS)considering privacy protection.In this model,a neural network is trained to approximate the feasible region of the DHS operation and then is reformulated as a set of mixed-integer linear constraints.Based on the received approximation models of DHSs and detailed electricity system model,the electricity operator conducts centralized optimization,and then sends specific heating generation plans back to corresponding heating operators.Furthermore,subsequent optimization is formulated for each DHS to obtain detailed operation strategy based on received heating generation plan.In this scheme,optimization of the IEHS could be achieved and privacy protection requirement is satisfied since the feasible region approximation model does not contain detailed system parameters.Case studies conducted on a small-scale system demonstrate accuracy of the proposed strategy and a large-scale system verify its application possibility.展开更多
Buildings account for a large amount of land use, energy and water consumption, and atmospheric pollution. For example, in the United States, they use 40% of the total national energy consumption (56% by residential d...Buildings account for a large amount of land use, energy and water consumption, and atmospheric pollution. For example, in the United States, they use 40% of the total national energy consumption (56% by residential dwellings), produce 38% of the total carbon dioxide emissions, and account for 12.2% of the total quantity of water consumed (2006). In this context, buildings with considerably reduced energy consumption are a key strategy to achieving energy savings and climate protection targets in both the residential and commercial/institutional sectors [1]. This article reviews a number of heating and cooling systems-existing and/or under development- available for residential buildings and briefly outlines some research projects and initiatives, as well as technical achievements in Canada and other developed countries over the last few years.展开更多
Green hydrogen can be produced by consuming surplus renewable generations.It can be injected into the natural gas networks,accelerating the decarbonization of energy systems.However,with the fluctuation of renewable e...Green hydrogen can be produced by consuming surplus renewable generations.It can be injected into the natural gas networks,accelerating the decarbonization of energy systems.However,with the fluctuation of renewable energies,the gas composition in the gas network may change dramatically as the hydrogen injection fluctuates.The gas interchangeability may be adversely affected.To investigate the ability to defend the fluctuated hydrogen injection,this paper proposes a gas interchangeability resilience evaluation method for hydrogen-blended integrated electricity and gas systems(H-IEGS).First,gas interchangeability resilience is defined by proposing several novel metrics.Then,A two-stage gas interchangeability management scheme is proposed to accommodate the hydrogen injections.The steady-state optimal electricity and hydrogen-gas energy flow technique is performed first to obtain the desired operating state of the H-IEGS.Then,the dynamic gas composition tracking is implemented to calculate the real-time traveling of hydrogen contents in the gas network,and evaluate the time-varying gas interchangeability metrics.Moreover,to improve the computation efficiency,a self-adaptive linearization technique is proposed and embedded in the solution process of discretized partial derivative equations.Finally,an IEEE 24 bus reliability test system and Belgium natural gas system are used to validate the proposed method.展开更多
How to effectively use the multi-energy demand elasticity of users to bid in the multi-energy market and formulate multi-energy retail packages is an urgent problem which needs to be solved by integrated energy servic...How to effectively use the multi-energy demand elasticity of users to bid in the multi-energy market and formulate multi-energy retail packages is an urgent problem which needs to be solved by integrated energy service providers(IESPs)to attract more users and reduce operating costs.This paper presents a unified clearing of electricity and natural gas based on a bi-level bidding and multi-energy retail price formulation method for IESPs considering multi-energy demand elasticity.First,we propose an operating structure of IESPs in the wholesale and retail energy markets.The multi-energy demand elasticity model of retail-side users and a retail price model for electricity,gas,heat and cooling are established.Secondly,a bi-level bidding model for IESPs considering multi-energy demand elasticity is established to provide IESPs with wholesale-side bidding decisions and retail-side energy retail price decisions.Finally,an example is given to verify the proposed method.The results show that the method improves the total social welfare of the electricity and natural gas markets by 7.99%and the profit of IESPs by 1.40%.It can reduce the variance of the electricity,gas,and cooling load curves,especially the reduction of the variance of the electricity load curve can which reach 79.90%.It can be seen that the research in this paper has a positive effect on repairing the limitations of integrated energy trading research and improving the economics of the operation of IESPs.展开更多
The energy consumption of distillation operation determines the amount of energy consumption throughout the chemical separation process. A heat integrated distillation column(HIDiC) could greatly reduce the irreversib...The energy consumption of distillation operation determines the amount of energy consumption throughout the chemical separation process. A heat integrated distillation column(HIDiC) could greatly reduce the irreversibility of the distillation process, so it gradually becomes a research hotspot. There are two major techniques for heat integration in HIDiC: internally and externally. This review paper describes the major research aspects of an internally heat integrated distillation column(IHIDiC), including the heat transfer models, various design structures(including the two-column HIDiC, Concentric HIDiC, Shell and tube HIDiC, Plate-fin HIDiC and the Super HIDiC, etc.), experimental research, simulation and optimization, process control research, as well as industrial plants and potential industrial applications. Among them, the heat transfer performance of various structures was analyzed of the various design structures based on experimental research, the effects of different factors(including relative volatility, reflux ratio, compression ratio, etc.) on HIDiC energy consumption or TAC is summarized in the simulation part. The calculation methods of the overall heat transfer coefficient and heat transfer models are summarized. The various optimization algorithms and optimization results of simplified HIDiC are summarized in the optimization part. The research status and the key technical issues in various aspects of HIDiC are summarized in this paper. In order to meet the requirements of industrial energy efficiency,the selection of multi-component separation distillation configurations needs to be considered more diversified,and internal complex coupling relationship of HIDiC needs to be further studied.展开更多
A discrete total variation calculus with variable time steps is presented for mechanico-electrical systems where there exist non-potential and dissipative forces. By using this discrete variation calculus, the symplec...A discrete total variation calculus with variable time steps is presented for mechanico-electrical systems where there exist non-potential and dissipative forces. By using this discrete variation calculus, the symplectic-energy-first integrators for mechanico-electrical systems are derived. To do this, the time step adaptation is employed. The discrete variational principle and the Euler-Lagrange equation are derived for the systems. By using this discrete algorithm it is shown that mechanico-electrical systems are not symplectic and their energies are not conserved unless they are Lagrange mechanico-electrical systems. A practical example is presented to illustrate these results.展开更多
In the electricity market environment,the regional integrated energy system(RIES)can reduce the total operation cost by participating in electricity market transactions.However,the RIES will face the risk of load and ...In the electricity market environment,the regional integrated energy system(RIES)can reduce the total operation cost by participating in electricity market transactions.However,the RIES will face the risk of load and electricity price uncertainties,which may make its operation cost higher than expected.This paper proposes a method to optimize the operation cost of the RIES in the electricity market environment considering uncertainty.Firstly,based on the operation cost structure of the RIES in the electricity market environment,the energy flow relationship of the RIES is analyzed,and the operation cost model of the RIES is built.Then,the electricity purchase costs of the RIES in the medium-and long-term electricity markets,the spot electricity market,and the retail electricity market are analyzed.Finally,considering the risk of load and electricity price uncertainties,the operation cost optimization model of the RIES is established based on conditional value-at-risk.Then it is solved to obtain the operation cost optimization strategy of the RIES.Verification results show that the proposed operation cost optimization method can reduce the operation cost of high electricity price scenario by optimizing the energy purchase and distribution strategy,constrain the risk of load and electricity price uncertainties,and help balance the risks and benefits.展开更多
Denmark’ goal of being independent of fossil energy sources in 2050 puts forward great demands on all energy subsystems (electricity, heat, gas and transport, etc.) to be operated in a holistic manner. The Danish exp...Denmark’ goal of being independent of fossil energy sources in 2050 puts forward great demands on all energy subsystems (electricity, heat, gas and transport, etc.) to be operated in a holistic manner. The Danish experience and challenges of wind power integration and the development of district heating systems are summarized in this paper. How to optimally use the cross-sectoral flexibility by intelligent control (model predictive control-based) of the key coupling components in an integrated heat and power system including electrical heat pumps in the demand side, and thermal storage applications in buildings is investigated.展开更多
基金supported by Shanghai Rising-Star Program(No.22QA1403900)the National Natural Science Foundation of China(No.71804106)the Noncarbon Energy Conversion and Utilization Institute under the Shanghai Class IV Peak Disciplinary Development Program.
文摘Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method.
基金supported by the National Natural Science Foundation of China(Grant number 51977154)。
文摘Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model considering P2G and carbon capture systems,and a two-stage robust optimization model of the electricity-heat-gascold integrated energy system was developed.First,a CHP model considering the P2G and carbon capture system was established,and the electric-thermal coupling characteristics and P2G capacity constraints of the model were derived,which proved that the model could weaken the electric-thermal coupling characteristics,increase the electric power regulation range,and reduce carbon emissions.Subsequently,a two-stage robust optimal scheduling model of an IES was constructed,in which the objective function in the day-ahead scheduling stage was to minimize the start-up and shutdown costs.The objective function in the real-time scheduling stage was to minimize the equipment operating costs,carbon emission costs,wind curtailment,and solar curtailment costs,considering multiple uncertainties.Finally,after the objective function is linearized with a ψ-piecewise method,the model is solved based on the C&CG algorithm.Simulation results show that the proposed model can effectively absorb renewable energy and reduce the total cost of the system.
基金This work was supported by the National Key Research and Development Program of China(No.2019YFE0193200 KY202001)Science and Technology Planning Project of Beijing(No.Z201100008320001 KY191004).
文摘For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.
基金This work was supported by the Science and Technology Program of State Grid Corporation of China(522300190008).
文摘Combined heat and electricity operation with variable mass flow rates promotes flexibility,economy,and sustainability through synergies between electric power systems(EPSs)and district heating systems(DHSs).Such combined operation presents a highly nonlinear and nonconvex optimization problem,mainly due to the bilinear terms in the heat flow model—that is,the product of the mass flow rate and the nodal temperature.Existing methods,such as nonlinear optimization,generalized Benders decomposition,and convex relaxation,still present challenges in achieving a satisfactory performance in terms of solution quality and computational efficiency.To resolve this problem,we herein first reformulate the district heating network model through an equivalent transformation and variable substitution.The reformulated model has only one set of nonconvex constraints with reduced bilinear terms,and the remaining constraints are linear.Such a reformulation not only ensures optimality,but also accelerates the solving process.To relax the remaining bilinear constraints,we then apply McCormick envelopes and obtain an objective lower bound of the reformulated model.To improve the quality of the McCormick relaxation,we employ a piecewise McCormick technique that partitions the domain of one of the variables of the bilinear terms into several disjoint regions in order to derive strengthened lower and upper bounds of the partitioned variables.We propose a heuristic tightening method to further constrict the strengthened bounds derived from the piecewise McCormick technique and recover a nearby feasible solution.Case studies show that,compared with the interior point method and the method implemented in a global bilinear solver,the proposed tightening McCormick method quickly solves the heat–electricity operation problem with an acceptable feasibility check and optimality.
基金the fund program of research on re-electrification(heat pump clean heating)to promote the new energy consumption in Shaanxi power grid(5226KY18002P).
文摘In view of the Three North areas existing wind power absorption and environment pollution problems,the previous scholars have improved the wind abandon problem by adding electrothermal coupling equipment or optimizing power grid operation.In this paper,an electrothermal integrated energy system including heat pump and thermal storage units was proposed.The scheduling model was based on the load data and the output characteristics of power units,each power unit capacity was programmed without constraints,and the proposed scheduling model was compared with the traditional combined heat and power scheduling model.Results showed that the investment and pollutant discharge of the system was reduced respectively.Wind power was fully absorbed.Compared with the traditional thermal power unit,the proportion of the output was significantly decreased by the proposed model.The proposed system could provide a new prospect for wind power absorption and environment protection.
基金supported by National Natural Science Foundation of China(52177086)Fundamental Research Funds for the Central Universities(2023ZYGXZR063).
文摘Observability analysis(OA)is vital to obtaining the available input measurements of state estimation(SE)in an integrated electricity and heating system(IEHS).Considering the thermal quasi-dynamics in pipelines,the measurement equations in heating systems are dependent on the estimated results,leading to an interdependency between OA and SE.Conventional OA methods require measurement equations be known exactly before SE is performed,and they are not applicable to IEHSs.To bridge this gap,a scenario-based OA scheme for IEHSs is devised that yields reliable analysis results for a predefined set of time-delay scenarios to cope with this interdependency.As its core procedure,the observable state identification and observability restoration are formulated in terms of integer linear programming.Numerical tests are conducted to demonstrate the validity and superiority of the proposed formulation.
基金Supported by Scientific Research Development Fund of Hefei University of Technology (2009HGXJ0174)~~
文摘Taking the planning and major architectural design projects of Anqing Children Welfare Home for example,through the research on categories and each component of solar water heating system,the paper discussed strategies and methods to realize solar energy and architectural integration design in the climate condition and location environment of Anhui Province.
基金support provided by the Nature Science Foundation of Shandong Province(ZR201709180049)the Shandong Key Research and Development Program(2019GSF109023).
文摘In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system.
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
文摘In recent years, Combined electro-thermal system has developed rapidly. In order to provide the initial data for the analysis of the combined electro-thermal system, a practical energy flow calculation method for the combined electro-thermal system is proposed in this paper. Based on the detailed analysis of the topology structure of the heating network and its hydraulic and thermodynamic model, the forward-backward sweep method for the heat flow of the heating network is established, which is more suitable for the actual radial heating network. The electric and thermal coupling model for heating source, such as thermoelectric unit and electric boiler is established, and the heat flow of heating network and the power flow of power grid are calculated orderly, thus a fast calculation method for the combined electro-thermal system is formed. What’s more, a combined electro-thermal system with two-stage peak-shaving electric boiler is used as the example system. This paper validates the effectiveness and rapidity of this method through the example system, and analyzes the influence for the energy flow of combined electro-thermal system caused by the operating parameters such as the installation location of electric boiler, the outlet water temperature of heat source and the outlet flow rate, etc.
文摘A generalized steady-state model is being developed for an internal heat integrated distillation column (IHIDiC). A procedure incorporating the Newton-Raphson method is devised for solving the model equations. Separation of an ethanol-water binary mixture is simulated and analyzed with the model. Two pinch points are found within the process, making the separation extremely difficult and expensive. Two sharp fronts in the temperature and the composition profiles are being observed. With the introduction of heat integration, satisfactory separation may be obtained in a limited number of stages with lower reflux ratios. Increasing the pressure difference between the rectifying and the stripping sections, however, would bring about a reduced relative volatility between the two components involved, creating adverse separation performances. It is obvious that optimization of the IHIDiC is of prime importance.
文摘The PRO/Ⅱ process simulation software was applied to carry out simulated calculation of the aromatics fractionation unit and the heat integrated rectification process was proposed for the aromatics fractionation section of the 1.0 Mt/a toluene disproportionation unit at the Zhenhai Refining and Chemical Company. The optimized operating parameters were obtained through the energy utilization analysis,process simulation,heat exchanger calculations and comparisons of utility consumption. The operation of commercialized unit has revealed that the design parameters of each rectification column were consistent with the operation results,and the utility consumption was about 47% lower than the traditional heat integrated process.
基金financially supported by China Scholarship Council(CSC)(No.201804910516 and No.202106070041)。
文摘This paper proposes a neural network based feasible region approximation model of a district heating system(DHS),and it is intended to be used for optimal operation of integrated electricity and heating system(IEHS)considering privacy protection.In this model,a neural network is trained to approximate the feasible region of the DHS operation and then is reformulated as a set of mixed-integer linear constraints.Based on the received approximation models of DHSs and detailed electricity system model,the electricity operator conducts centralized optimization,and then sends specific heating generation plans back to corresponding heating operators.Furthermore,subsequent optimization is formulated for each DHS to obtain detailed operation strategy based on received heating generation plan.In this scheme,optimization of the IEHS could be achieved and privacy protection requirement is satisfied since the feasible region approximation model does not contain detailed system parameters.Case studies conducted on a small-scale system demonstrate accuracy of the proposed strategy and a large-scale system verify its application possibility.
文摘Buildings account for a large amount of land use, energy and water consumption, and atmospheric pollution. For example, in the United States, they use 40% of the total national energy consumption (56% by residential dwellings), produce 38% of the total carbon dioxide emissions, and account for 12.2% of the total quantity of water consumed (2006). In this context, buildings with considerably reduced energy consumption are a key strategy to achieving energy savings and climate protection targets in both the residential and commercial/institutional sectors [1]. This article reviews a number of heating and cooling systems-existing and/or under development- available for residential buildings and briefly outlines some research projects and initiatives, as well as technical achievements in Canada and other developed countries over the last few years.
基金supported in part by the Science and Technology Development Fund,Macao SAR(File no.SKL-IOTSC(UM)-2021-2023,File no.0003/2020/AKP,and File no.0117/2022/A3)the Natural Science Foundation of Jiangsu Province,China(Operational reliability evaluation of multi-source and heterogeneous urban multi-energy systems,BK20220261).
文摘Green hydrogen can be produced by consuming surplus renewable generations.It can be injected into the natural gas networks,accelerating the decarbonization of energy systems.However,with the fluctuation of renewable energies,the gas composition in the gas network may change dramatically as the hydrogen injection fluctuates.The gas interchangeability may be adversely affected.To investigate the ability to defend the fluctuated hydrogen injection,this paper proposes a gas interchangeability resilience evaluation method for hydrogen-blended integrated electricity and gas systems(H-IEGS).First,gas interchangeability resilience is defined by proposing several novel metrics.Then,A two-stage gas interchangeability management scheme is proposed to accommodate the hydrogen injections.The steady-state optimal electricity and hydrogen-gas energy flow technique is performed first to obtain the desired operating state of the H-IEGS.Then,the dynamic gas composition tracking is implemented to calculate the real-time traveling of hydrogen contents in the gas network,and evaluate the time-varying gas interchangeability metrics.Moreover,to improve the computation efficiency,a self-adaptive linearization technique is proposed and embedded in the solution process of discretized partial derivative equations.Finally,an IEEE 24 bus reliability test system and Belgium natural gas system are used to validate the proposed method.
基金supported in part by the National Key R&D Program of China(2018YFB0905000)the Science and Technology Project of the State Grid Corporation of China(SGTJDK 00DWJS1800232)。
文摘How to effectively use the multi-energy demand elasticity of users to bid in the multi-energy market and formulate multi-energy retail packages is an urgent problem which needs to be solved by integrated energy service providers(IESPs)to attract more users and reduce operating costs.This paper presents a unified clearing of electricity and natural gas based on a bi-level bidding and multi-energy retail price formulation method for IESPs considering multi-energy demand elasticity.First,we propose an operating structure of IESPs in the wholesale and retail energy markets.The multi-energy demand elasticity model of retail-side users and a retail price model for electricity,gas,heat and cooling are established.Secondly,a bi-level bidding model for IESPs considering multi-energy demand elasticity is established to provide IESPs with wholesale-side bidding decisions and retail-side energy retail price decisions.Finally,an example is given to verify the proposed method.The results show that the method improves the total social welfare of the electricity and natural gas markets by 7.99%and the profit of IESPs by 1.40%.It can reduce the variance of the electricity,gas,and cooling load curves,especially the reduction of the variance of the electricity load curve can which reach 79.90%.It can be seen that the research in this paper has a positive effect on repairing the limitations of integrated energy trading research and improving the economics of the operation of IESPs.
基金Supported by the National Natural Science Foundation of China,Research on Energy-saving Mechanism and Dynamic Behavior of Optimizing Trans-wall Heat Transfer Processes of Dividing Wall Columns(21306036)High-level Talent Support Project of Hebei Province,Research on Energy Integration and Process Control of Concentric Internal Thermally Coupled Distillation System(A2017002032)
文摘The energy consumption of distillation operation determines the amount of energy consumption throughout the chemical separation process. A heat integrated distillation column(HIDiC) could greatly reduce the irreversibility of the distillation process, so it gradually becomes a research hotspot. There are two major techniques for heat integration in HIDiC: internally and externally. This review paper describes the major research aspects of an internally heat integrated distillation column(IHIDiC), including the heat transfer models, various design structures(including the two-column HIDiC, Concentric HIDiC, Shell and tube HIDiC, Plate-fin HIDiC and the Super HIDiC, etc.), experimental research, simulation and optimization, process control research, as well as industrial plants and potential industrial applications. Among them, the heat transfer performance of various structures was analyzed of the various design structures based on experimental research, the effects of different factors(including relative volatility, reflux ratio, compression ratio, etc.) on HIDiC energy consumption or TAC is summarized in the simulation part. The calculation methods of the overall heat transfer coefficient and heat transfer models are summarized. The various optimization algorithms and optimization results of simplified HIDiC are summarized in the optimization part. The research status and the key technical issues in various aspects of HIDiC are summarized in this paper. In order to meet the requirements of industrial energy efficiency,the selection of multi-component separation distillation configurations needs to be considered more diversified,and internal complex coupling relationship of HIDiC needs to be further studied.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10672143 and 60575055)the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciencesthe Natural Science Foundation of Henan Province Government, China (Grant No 0511022200)
文摘A discrete total variation calculus with variable time steps is presented for mechanico-electrical systems where there exist non-potential and dissipative forces. By using this discrete variation calculus, the symplectic-energy-first integrators for mechanico-electrical systems are derived. To do this, the time step adaptation is employed. The discrete variational principle and the Euler-Lagrange equation are derived for the systems. By using this discrete algorithm it is shown that mechanico-electrical systems are not symplectic and their energies are not conserved unless they are Lagrange mechanico-electrical systems. A practical example is presented to illustrate these results.
基金supported in part by the Research Project of Digital Grid Research Institute,China Southern Power Grid(No.YTYZW20010)in part by the Research and Development Program Project in Key Areas of Guangdong Province(No.2021B0101230003)in part by the National Natural Science Foundation of China(No.51907031)。
文摘In the electricity market environment,the regional integrated energy system(RIES)can reduce the total operation cost by participating in electricity market transactions.However,the RIES will face the risk of load and electricity price uncertainties,which may make its operation cost higher than expected.This paper proposes a method to optimize the operation cost of the RIES in the electricity market environment considering uncertainty.Firstly,based on the operation cost structure of the RIES in the electricity market environment,the energy flow relationship of the RIES is analyzed,and the operation cost model of the RIES is built.Then,the electricity purchase costs of the RIES in the medium-and long-term electricity markets,the spot electricity market,and the retail electricity market are analyzed.Finally,considering the risk of load and electricity price uncertainties,the operation cost optimization model of the RIES is established based on conditional value-at-risk.Then it is solved to obtain the operation cost optimization strategy of the RIES.Verification results show that the proposed operation cost optimization method can reduce the operation cost of high electricity price scenario by optimizing the energy purchase and distribution strategy,constrain the risk of load and electricity price uncertainties,and help balance the risks and benefits.
基金Danish Agency for Science, Technology and Innovation (No. 6144-00037)Danish InnovationFunding (No. 5185-00005A)
文摘Denmark’ goal of being independent of fossil energy sources in 2050 puts forward great demands on all energy subsystems (electricity, heat, gas and transport, etc.) to be operated in a holistic manner. The Danish experience and challenges of wind power integration and the development of district heating systems are summarized in this paper. How to optimally use the cross-sectoral flexibility by intelligent control (model predictive control-based) of the key coupling components in an integrated heat and power system including electrical heat pumps in the demand side, and thermal storage applications in buildings is investigated.