The real-time risk-averse dispatch problem of an integrated electricity and natural gas system(IEGS)is studied in this paper.It is formulated as a real-time conditional value-at-risk(CVaR)-based risk-averse dis-patch ...The real-time risk-averse dispatch problem of an integrated electricity and natural gas system(IEGS)is studied in this paper.It is formulated as a real-time conditional value-at-risk(CVaR)-based risk-averse dis-patch model in the Markov decision process framework.Because of its stochasticity,nonconvexity and nonlinearity,the model is difficult to analyze by traditional algorithms in an acceptable time.To address this non-deterministic polynomial-hard problem,a CVaR-based lookup-table approximate dynamic programming(CVaR-ADP)algo-rithm is proposed,and the risk-averse dispatch problem is decoupled into a series of tractable subproblems.The line pack is used as the state variable to describe the impact of one period’s decision on the future.This facilitates the reduction of load shedding and wind power curtailment.Through the proposed method,real-time decisions can be made according to the current information,while the value functions can be used to overview the whole opti-mization horizon to balance the current cost and future risk loss.Numerical simulations indicate that the pro-posed method can effectively measure and control the risk costs in extreme scenarios.Moreover,the decisions can be made within 10 s,which meets the requirement of the real-time dispatch of an IEGS.Index Terms—Integrated electricity and natural gas system,approximate dynamic programming,real-time dispatch,risk-averse,conditional value-at-risk.展开更多
With the significant development of liquefied natural gas(LNG)rail transport,the railway system is increasingly more closely connected with the integrated electricity-natural gas system(IEGS).To coordinate the economi...With the significant development of liquefied natural gas(LNG)rail transport,the railway system is increasingly more closely connected with the integrated electricity-natural gas system(IEGS).To coordinate the economic operations of the two systems,this paper innovatively proposes a coordinated dispatch model of IEGS with LNG infrastructures and a freight railway network with LNG transport.First,an operational scheduling model of the railway network,considering energy consumption,is put forward for both LNG transmission and ordinary freight transport.Then,the coordinated dispatch problem of IEGS and the railway network is formulated into a mixed-integer linear programming model via the big M method and a modified incremental linearization approach.Finally,a bi-level optimization algorithm based on generalized benders decomposition(GBD)is presented to solve the coordinated dispatch problem due to the restrictions on exchanging private information.Case studies demonstrate the effectiveness of the proposed model and algorithm as well as the potential benefit for wind power accommodation.展开更多
As power to gas(P2 G) technology gradually matures, the coupling between electricity networks and natural gas networks should ideally evolve synergistically.With the intent of characterizing market behaviors of integr...As power to gas(P2 G) technology gradually matures, the coupling between electricity networks and natural gas networks should ideally evolve synergistically.With the intent of characterizing market behaviors of integrated electric power and natural gas networks(IPGNs)with P2 G facilities, this paper establishes a steady-state model of P2 G and constructs optimal dispatch models of an electricity network and a natural gas network separately. In addition, a concept of slack energy flow(SEF) is proposed as a tool for coordinated optimal dispatch between the two networks. To study how the market pricing mechanism affects coordinated optimal dispatch in an IPGN, a market equilibrium-solving model for an IPGN is constructed according to game theory, with a solution based on the Nikaido-Isoda function. Case studies are conducted on a joint model that combines the modified IEEE 118-node electricity network and the Belgian 20-node gas network.The results show that if the game between an electric power company and a natural gas company reaches market equilibrium, not only can both companies maximize their profits, but also the coordinated operation of the coupling units, i.e., gas turbines and P2 G facilities, will contribute more to renewable energy utilization and carbon emission reduction.展开更多
This paper develops a many-objective optimization model, which contains objectives representing the interests of the electricity and gas networks, as well as the distributed district heating and cooling units, to coor...This paper develops a many-objective optimization model, which contains objectives representing the interests of the electricity and gas networks, as well as the distributed district heating and cooling units, to coordinate the benefits of all parties participated in the integrated energy system(IES). In order to solve the many-objective optimization model efficiently, an improved objective reduction(IOR) approach is proposed, aiming at acquiring the smallest set of objectives. The IOR approach utilizes the Spearman’s rank correlation coefficient to measure the relationship between objectives based on the Pareto-optimal front captured by the multi-objective group search optimizer with adaptive covariance and Lévy flights algorithm, and adopts various strategies to reduce the number of objectives gradually. Simulation studies are conducted on an IES consisting of a modified IEEE 30-bus electricity network and a 15-node gas network. The results show that the many-objective optimization problem is transformed into a bi-objective formulation by the IOR. Furthermore,our approach improves the overall quality of dispatch solutions and alleviates the decision making burden.展开更多
The wide utilization of gas-fired generation and the rapid development of power-to-gas technologies have led to the intensified integration of electricity and gas systems.The random failures of components in either el...The wide utilization of gas-fired generation and the rapid development of power-to-gas technologies have led to the intensified integration of electricity and gas systems.The random failures of components in either electricity or gas system may have a considerable impact on the reliabilities of both systems.Therefore,it is necessary to evaluate the reliabilities of electricity and gas systems considering their integration.In this paper,a novel reliability evaluation method for integrated electricity-gas systems(IEGSs)is proposed.First,reliability network equivalents are utilized to represent reliability models of gas-fired generating units,gas sources(GSs),power-to-gas facilities,and other conventional generating units in IEGS.A contingency management schema is then developed considering the coupling between electricity and gas systems based on an optimal power flow technique.Finally,the time-sequential Monte Carlo simulation approach is used to model the chronological characteristics of the corresponding reliability network equivalents.The proposed method is capable to evaluate customers’reliabilities in IEGS,which is illustrated on an integrated IEEE Reliability Test System and Belgium gas transmission system.展开更多
This paper proposes a hybrid multi-objective optimization and game-theoretic approach(HMOGTA)to achieve the optimal operation of integrated energy systems(IESs)consisting of electricity and natural gas(E&G)utility...This paper proposes a hybrid multi-objective optimization and game-theoretic approach(HMOGTA)to achieve the optimal operation of integrated energy systems(IESs)consisting of electricity and natural gas(E&G)utility networks,multiple distributed energy stations(DESs),and multiple energy users(EUs).The HMOGTA aims to solve the coordinated operation strategy of the electricity and natural gas networks considering the demand characteristics of DESs and EUs.In the HMOGTA,a hierarchical Stackelberg game model is developed for generating equilibrium strategies of DESs and EUs in each district energy network(DEN).Based on the game results,we obtain the coupling demand constraints of electricity and natural gas(CDCENs)which reflect the relationship between the amounts and prices of electricity and cooling(E&C)that DESs purchase from utility networks.Furthermore,the minimization of conflicting costs of E&G networks considering the CDCENs are solved by a multi-objective optimization method.A case study is conducted on a test IES composed of a 20-node natural gas network,a modified IEEE 30-bus system,and 3 DENs,which verifies the effectiveness of the proposed HMOGTA to realize fair treatment for all participants in the IES.展开更多
The sharp increase in the total installed capacity of natural gas generators has intensified the dynamic interaction between the electricity and natural gas systems,which could induce cascading failure propagation acr...The sharp increase in the total installed capacity of natural gas generators has intensified the dynamic interaction between the electricity and natural gas systems,which could induce cascading failure propagation across the two systems that deserves intensive research.Considering the distinct time response behaviors of the two systems,this paper discusses an integrated simulation approach to simulate the cascading failure propagation process of integrated electricity and natural gas systems(IEGSs).On one hand,considering instantaneous re-distribution of power flows after the occurrence of disturbance or failure,the steady-state AC power flow model is employed.On the other hand,gas transmission dynamics are represented by dynamic model to capture the details of its transition process.The interactions between the two systems,intensified by energy coupling components(such as gas-fired generator and electricity-driven gas compressor)as well as the switching among the operation modes of compressors during the cascading failure propagation process,are studied.An IEGS composed of the IEEE 30-bus electricity system and a 14-node 15-pipeline gas system is established to illustrate the effectiveness of the proposed simulation approach,in which two energy sub-systems are coupled by compressor and gas-fired generator.Numerical results clearly demonstrate that heterogeneous interactions between electricity and gas systems would trigger the cascading failure propagation between the two coupling systems.展开更多
The integration of natural gas in electricity network requires a more reliable operating plan for increasing uncertainties in the whole system. In this paper, a threestage robust optimization model is proposed for res...The integration of natural gas in electricity network requires a more reliable operating plan for increasing uncertainties in the whole system. In this paper, a threestage robust optimization model is proposed for resilient operation of energy system which integrates electricity and natural gas transmission networks with the objective of minimizing load curtailments caused by attacks. Nonconvex constrains are linearized in order to formulate the dual problem of optimal energy flow. Then, the proposed three-stage problem can be reformulated into a two-stage mixed integer linear program(MILP) and solved by Benders decomposition algorithm. Numerical studies on IEEE30-bus power system with 7-node natural gas network and IEEE 118-bus power system with 14-node natural gas network validate the feasibility of the proposed model for improving resilience of integrated energy system. Energy storage facilities are also considered for the resiliency analysis.展开更多
As the proportion of wind power generation increases in power systems,it is necessary to develop new ways for wind power accommodation and improve the existing power dispatch model.The power-to-gas technology,which of...As the proportion of wind power generation increases in power systems,it is necessary to develop new ways for wind power accommodation and improve the existing power dispatch model.The power-to-gas technology,which offers a new approach to accommodate surplus wind power,is an excellent way to solve the former.Hence,this paper proposes to involve power-to-gas technology in the integrated electricity and natural gas systems(IEGSs).To solve the latter,on one hand,a new indicator,the scale factor of wind power integration,is introduced into the wind power stochastic model to better describe the uncertainty of grid-connected wind power;on the other hand,for quantizing and minimizing the impact of the uncertainties of wind power and system loads on system security,security risk constraints are established for the IEGS by the conditional value-at-risk method.By considering these two aspects,an MILP formulation of a security-risk based stochastic dynamic economic dispatch model for an IEGS is established,and GUROBI obtained from GAMS is used for the solution.Case studies are conducted on an IEGS consisting of a modified IEEE 39-bus system and the Belgium 20-node natural gas system to examine the effectiveness of the proposed dispatch model.展开更多
Assessing the reliability of integrated electricity and gas systems has become an important issue due to the strong dependence of these energy networks through the power-to-gas(P2G)and combined heat and power(CHP)tech...Assessing the reliability of integrated electricity and gas systems has become an important issue due to the strong dependence of these energy networks through the power-to-gas(P2G)and combined heat and power(CHP)technologies.The current work,initially,presents a detailed energy flow model for the integrated power and natural gas system in light of the P2G and CHP technologies.Considering the simultaneous load flow of networks,a contingency analysis procedure is proposed,and reliability is assessed through sequential Monte Carlo simulations.The current study examines the effect of independent and dependent operation of energy networks on the reliability of the systems.In particular,the effect of employing both P2G and CHP technologies on reliability criteria is evaluated.In addition,a series of sensitivity analysis are performed on the size and site of these technologies to investigate their effects on system reliability.The proposed method is implemented on an integrated IEEE 24-bus electrical power system and 20-node Belgian natural gas system.The simulation procedure certifies the proposed method for reliability assessment is practical and applicable.In addition,the results prove connection between energy networks through P2G and CHP technologies can improve reliability of networks if the site and size of technologies are properly determined.展开更多
The increasing adoption of gas-fired power plants directly strengthens the coupling between electric power and natural gas systems. Current industrial practice in optimal power flow for electric power systems has not ...The increasing adoption of gas-fired power plants directly strengthens the coupling between electric power and natural gas systems. Current industrial practice in optimal power flow for electric power systems has not taken the security constraints of gas systems into consideration, resulting in an overly-optimistic solution. Meanwhile, the operation of electric power and natural gas systems is coupled over multiple periods because of the ramp rate limits of power generators and the slow dynamical characteristics of gas systems. Based on these motivations, we propose a multi-period integrated natural gas and electric power system probabilistic optimal power flow(M-GEPOPF) model, which includes dynamic gas flow models. To address the uncertainties originating from wind power and load forecasting, a probabilistic optimal power flow(POPF) calculation based on a three-point estimate method(3 PEM) is adopted. Moreover, power-togas(Pt G) units are employed to avoid wind power curtailment and enable flexible bi-directional energy flows between the coupled energy systems. An integrated IEEE RTS 24-bus electric power system and the Belgian 20-node natural gas system are employed as a test case to verify the applicability of the proposed M-GEPOPF model, and to demonstrate the potential economic benefits of Pt G units.展开更多
With the growing interdependence between the electricity system and the natural gas system,the operation uncertainties in either subsystem,such as wind fluctuations or component failures,could have a magnified impact ...With the growing interdependence between the electricity system and the natural gas system,the operation uncertainties in either subsystem,such as wind fluctuations or component failures,could have a magnified impact on the reliability of the whole system due to energy interactions.A joint reserve scheduling model considering the cross-sectorial impacts of operation uncertainties is essential but still insufficient to guarantee the reliable operation of the integrated electricity and natural gas system(IEGS).Therefore,this paper proposes a day-ahead security-constrained unit commitment(SCUC)model for the IEGS to schedule the operation and reserve simultaneously considering reliability requirements.Firstly,the multi-state models for generating units and gas wells are established.Based on the multi-state models,the expected unserved energy cost(EUEC)and the expected wind curtailment cost(EWC)criteria are proposed based on probabilistic methods considering wind fluctuation and random failures of components in IEGS.Furthermore,the EUEC and EWC criteria are incorporated into the day-ahead SCUC model,which is nonconvex and mathematically reformulated into a solvable mixed-integer second-order cone programming(MISOCP)problem.The proposed model is validated using an IEEE 30-bus system and Belgium 20-node natural gas system.Numerical results demonstrate that the proposed model can effectively schedule the energy reserve to guarantee the reliable operation of the IEGS considering the multiple uncertainties in different subsystems and the cross-sectorial failure propagation.展开更多
How to effectively use the multi-energy demand elasticity of users to bid in the multi-energy market and formulate multi-energy retail packages is an urgent problem which needs to be solved by integrated energy servic...How to effectively use the multi-energy demand elasticity of users to bid in the multi-energy market and formulate multi-energy retail packages is an urgent problem which needs to be solved by integrated energy service providers(IESPs)to attract more users and reduce operating costs.This paper presents a unified clearing of electricity and natural gas based on a bi-level bidding and multi-energy retail price formulation method for IESPs considering multi-energy demand elasticity.First,we propose an operating structure of IESPs in the wholesale and retail energy markets.The multi-energy demand elasticity model of retail-side users and a retail price model for electricity,gas,heat and cooling are established.Secondly,a bi-level bidding model for IESPs considering multi-energy demand elasticity is established to provide IESPs with wholesale-side bidding decisions and retail-side energy retail price decisions.Finally,an example is given to verify the proposed method.The results show that the method improves the total social welfare of the electricity and natural gas markets by 7.99%and the profit of IESPs by 1.40%.It can reduce the variance of the electricity,gas,and cooling load curves,especially the reduction of the variance of the electricity load curve can which reach 79.90%.It can be seen that the research in this paper has a positive effect on repairing the limitations of integrated energy trading research and improving the economics of the operation of IESPs.展开更多
This study proposes an optimized model of a micro-energy network(MEN)that includes electricity and natural gas with integrated solar,wind,and energy storage systems(ESSs).The proposed model is based on energy hubs(EHs...This study proposes an optimized model of a micro-energy network(MEN)that includes electricity and natural gas with integrated solar,wind,and energy storage systems(ESSs).The proposed model is based on energy hubs(EHs)and it aims to minimize operation costs and greenhouse emissions.The research is motivated by the increasing use of renewable energies and ESSs for secure energy supply while reducing operation costs and environment effects.A general algebraic modeling system(GAMS)is used to solve the optimal operation problem in the MEN.The results demonstrate that an optimal MEN formed by multiple EHs can provide appropriate and flexible responses to fluctuations in electricity prices and adjustments between time periods and seasons.It also yields significant reductions in operation costs and emissions.The proposed model can contribute to future research by providing a more efficient network model(as compared with the traditional electricity supply system)to scale down the environmental and economic impacts of electricity storage and supply systems on MEN operation.展开更多
基金supported by State Key Laboratory of HVDC under Grant SKLHVDC-2021-KF-09.
文摘The real-time risk-averse dispatch problem of an integrated electricity and natural gas system(IEGS)is studied in this paper.It is formulated as a real-time conditional value-at-risk(CVaR)-based risk-averse dis-patch model in the Markov decision process framework.Because of its stochasticity,nonconvexity and nonlinearity,the model is difficult to analyze by traditional algorithms in an acceptable time.To address this non-deterministic polynomial-hard problem,a CVaR-based lookup-table approximate dynamic programming(CVaR-ADP)algo-rithm is proposed,and the risk-averse dispatch problem is decoupled into a series of tractable subproblems.The line pack is used as the state variable to describe the impact of one period’s decision on the future.This facilitates the reduction of load shedding and wind power curtailment.Through the proposed method,real-time decisions can be made according to the current information,while the value functions can be used to overview the whole opti-mization horizon to balance the current cost and future risk loss.Numerical simulations indicate that the pro-posed method can effectively measure and control the risk costs in extreme scenarios.Moreover,the decisions can be made within 10 s,which meets the requirement of the real-time dispatch of an IEGS.Index Terms—Integrated electricity and natural gas system,approximate dynamic programming,real-time dispatch,risk-averse,conditional value-at-risk.
基金This work was supported by the National Key Research and Development Program of China(2016YFB0901900)the National Natural Science Foundation of China(51637008).
文摘With the significant development of liquefied natural gas(LNG)rail transport,the railway system is increasingly more closely connected with the integrated electricity-natural gas system(IEGS).To coordinate the economic operations of the two systems,this paper innovatively proposes a coordinated dispatch model of IEGS with LNG infrastructures and a freight railway network with LNG transport.First,an operational scheduling model of the railway network,considering energy consumption,is put forward for both LNG transmission and ordinary freight transport.Then,the coordinated dispatch problem of IEGS and the railway network is formulated into a mixed-integer linear programming model via the big M method and a modified incremental linearization approach.Finally,a bi-level optimization algorithm based on generalized benders decomposition(GBD)is presented to solve the coordinated dispatch problem due to the restrictions on exchanging private information.Case studies demonstrate the effectiveness of the proposed model and algorithm as well as the potential benefit for wind power accommodation.
基金supported by the National Natural Science Foundation of China(No.51377060)the Major Consulting Program of Chinese Academy of Engineering(No.2015-ZD-09-09)
文摘As power to gas(P2 G) technology gradually matures, the coupling between electricity networks and natural gas networks should ideally evolve synergistically.With the intent of characterizing market behaviors of integrated electric power and natural gas networks(IPGNs)with P2 G facilities, this paper establishes a steady-state model of P2 G and constructs optimal dispatch models of an electricity network and a natural gas network separately. In addition, a concept of slack energy flow(SEF) is proposed as a tool for coordinated optimal dispatch between the two networks. To study how the market pricing mechanism affects coordinated optimal dispatch in an IPGN, a market equilibrium-solving model for an IPGN is constructed according to game theory, with a solution based on the Nikaido-Isoda function. Case studies are conducted on a joint model that combines the modified IEEE 118-node electricity network and the Belgian 20-node gas network.The results show that if the game between an electric power company and a natural gas company reaches market equilibrium, not only can both companies maximize their profits, but also the coordinated operation of the coupling units, i.e., gas turbines and P2 G facilities, will contribute more to renewable energy utilization and carbon emission reduction.
基金supported by the State Key Program of National Natural Science Foundation of China(No.51437006)Guangdong Innovative Research Team Program(No.201001N0104744201)
文摘This paper develops a many-objective optimization model, which contains objectives representing the interests of the electricity and gas networks, as well as the distributed district heating and cooling units, to coordinate the benefits of all parties participated in the integrated energy system(IES). In order to solve the many-objective optimization model efficiently, an improved objective reduction(IOR) approach is proposed, aiming at acquiring the smallest set of objectives. The IOR approach utilizes the Spearman’s rank correlation coefficient to measure the relationship between objectives based on the Pareto-optimal front captured by the multi-objective group search optimizer with adaptive covariance and Lévy flights algorithm, and adopts various strategies to reduce the number of objectives gradually. Simulation studies are conducted on an IES consisting of a modified IEEE 30-bus electricity network and a 15-node gas network. The results show that the many-objective optimization problem is transformed into a bi-objective formulation by the IOR. Furthermore,our approach improves the overall quality of dispatch solutions and alleviates the decision making burden.
基金supported by National Natural Science Foundation of China(No.71871200).
文摘The wide utilization of gas-fired generation and the rapid development of power-to-gas technologies have led to the intensified integration of electricity and gas systems.The random failures of components in either electricity or gas system may have a considerable impact on the reliabilities of both systems.Therefore,it is necessary to evaluate the reliabilities of electricity and gas systems considering their integration.In this paper,a novel reliability evaluation method for integrated electricity-gas systems(IEGSs)is proposed.First,reliability network equivalents are utilized to represent reliability models of gas-fired generating units,gas sources(GSs),power-to-gas facilities,and other conventional generating units in IEGS.A contingency management schema is then developed considering the coupling between electricity and gas systems based on an optimal power flow technique.Finally,the time-sequential Monte Carlo simulation approach is used to model the chronological characteristics of the corresponding reliability network equivalents.The proposed method is capable to evaluate customers’reliabilities in IEGS,which is illustrated on an integrated IEEE Reliability Test System and Belgium gas transmission system.
基金This work was supported by the State Key Program of National Natural Science Foundation of China(Grant No.51437006)the Natural Science Foundation of Guangdong Province,China(2018A030313799).
文摘This paper proposes a hybrid multi-objective optimization and game-theoretic approach(HMOGTA)to achieve the optimal operation of integrated energy systems(IESs)consisting of electricity and natural gas(E&G)utility networks,multiple distributed energy stations(DESs),and multiple energy users(EUs).The HMOGTA aims to solve the coordinated operation strategy of the electricity and natural gas networks considering the demand characteristics of DESs and EUs.In the HMOGTA,a hierarchical Stackelberg game model is developed for generating equilibrium strategies of DESs and EUs in each district energy network(DEN).Based on the game results,we obtain the coupling demand constraints of electricity and natural gas(CDCENs)which reflect the relationship between the amounts and prices of electricity and cooling(E&C)that DESs purchase from utility networks.Furthermore,the minimization of conflicting costs of E&G networks considering the CDCENs are solved by a multi-objective optimization method.A case study is conducted on a test IES composed of a 20-node natural gas network,a modified IEEE 30-bus system,and 3 DENs,which verifies the effectiveness of the proposed HMOGTA to realize fair treatment for all participants in the IES.
基金supported by the National Natural Science Foundation of China(No.51777182)the National Natural Science Foundation(No.CMMI1635339)
文摘The sharp increase in the total installed capacity of natural gas generators has intensified the dynamic interaction between the electricity and natural gas systems,which could induce cascading failure propagation across the two systems that deserves intensive research.Considering the distinct time response behaviors of the two systems,this paper discusses an integrated simulation approach to simulate the cascading failure propagation process of integrated electricity and natural gas systems(IEGSs).On one hand,considering instantaneous re-distribution of power flows after the occurrence of disturbance or failure,the steady-state AC power flow model is employed.On the other hand,gas transmission dynamics are represented by dynamic model to capture the details of its transition process.The interactions between the two systems,intensified by energy coupling components(such as gas-fired generator and electricity-driven gas compressor)as well as the switching among the operation modes of compressors during the cascading failure propagation process,are studied.An IEGS composed of the IEEE 30-bus electricity system and a 14-node 15-pipeline gas system is established to illustrate the effectiveness of the proposed simulation approach,in which two energy sub-systems are coupled by compressor and gas-fired generator.Numerical results clearly demonstrate that heterogeneous interactions between electricity and gas systems would trigger the cascading failure propagation between the two coupling systems.
基金supported by National Natural Science Foundation of China(No.51577116)
文摘The integration of natural gas in electricity network requires a more reliable operating plan for increasing uncertainties in the whole system. In this paper, a threestage robust optimization model is proposed for resilient operation of energy system which integrates electricity and natural gas transmission networks with the objective of minimizing load curtailments caused by attacks. Nonconvex constrains are linearized in order to formulate the dual problem of optimal energy flow. Then, the proposed three-stage problem can be reformulated into a two-stage mixed integer linear program(MILP) and solved by Benders decomposition algorithm. Numerical studies on IEEE30-bus power system with 7-node natural gas network and IEEE 118-bus power system with 14-node natural gas network validate the feasibility of the proposed model for improving resilience of integrated energy system. Energy storage facilities are also considered for the resiliency analysis.
基金This work was supported by National Natural Science Foundation of China(No.51777077)Natural Science Foundation of Guangdong Province(2017A030313304).
文摘As the proportion of wind power generation increases in power systems,it is necessary to develop new ways for wind power accommodation and improve the existing power dispatch model.The power-to-gas technology,which offers a new approach to accommodate surplus wind power,is an excellent way to solve the former.Hence,this paper proposes to involve power-to-gas technology in the integrated electricity and natural gas systems(IEGSs).To solve the latter,on one hand,a new indicator,the scale factor of wind power integration,is introduced into the wind power stochastic model to better describe the uncertainty of grid-connected wind power;on the other hand,for quantizing and minimizing the impact of the uncertainties of wind power and system loads on system security,security risk constraints are established for the IEGS by the conditional value-at-risk method.By considering these two aspects,an MILP formulation of a security-risk based stochastic dynamic economic dispatch model for an IEGS is established,and GUROBI obtained from GAMS is used for the solution.Case studies are conducted on an IEGS consisting of a modified IEEE 39-bus system and the Belgium 20-node natural gas system to examine the effectiveness of the proposed dispatch model.
文摘Assessing the reliability of integrated electricity and gas systems has become an important issue due to the strong dependence of these energy networks through the power-to-gas(P2G)and combined heat and power(CHP)technologies.The current work,initially,presents a detailed energy flow model for the integrated power and natural gas system in light of the P2G and CHP technologies.Considering the simultaneous load flow of networks,a contingency analysis procedure is proposed,and reliability is assessed through sequential Monte Carlo simulations.The current study examines the effect of independent and dependent operation of energy networks on the reliability of the systems.In particular,the effect of employing both P2G and CHP technologies on reliability criteria is evaluated.In addition,a series of sensitivity analysis are performed on the size and site of these technologies to investigate their effects on system reliability.The proposed method is implemented on an integrated IEEE 24-bus electrical power system and 20-node Belgian natural gas system.The simulation procedure certifies the proposed method for reliability assessment is practical and applicable.In addition,the results prove connection between energy networks through P2G and CHP technologies can improve reliability of networks if the site and size of technologies are properly determined.
基金supported by the National Natural Science Foundation of China(No.51277052,No.51407125)
文摘The increasing adoption of gas-fired power plants directly strengthens the coupling between electric power and natural gas systems. Current industrial practice in optimal power flow for electric power systems has not taken the security constraints of gas systems into consideration, resulting in an overly-optimistic solution. Meanwhile, the operation of electric power and natural gas systems is coupled over multiple periods because of the ramp rate limits of power generators and the slow dynamical characteristics of gas systems. Based on these motivations, we propose a multi-period integrated natural gas and electric power system probabilistic optimal power flow(M-GEPOPF) model, which includes dynamic gas flow models. To address the uncertainties originating from wind power and load forecasting, a probabilistic optimal power flow(POPF) calculation based on a three-point estimate method(3 PEM) is adopted. Moreover, power-togas(Pt G) units are employed to avoid wind power curtailment and enable flexible bi-directional energy flows between the coupled energy systems. An integrated IEEE RTS 24-bus electric power system and the Belgian 20-node natural gas system are employed as a test case to verify the applicability of the proposed M-GEPOPF model, and to demonstrate the potential economic benefits of Pt G units.
基金supported in part by Science&Technology Project of State Grid Corporation of China(No.5100-202199285A-0-0-00)in part by the National Natural Science Foundation China and Joint Programming Initiative Urban Europe Call(NSFC-JPI UE)(No.71961137004).
文摘With the growing interdependence between the electricity system and the natural gas system,the operation uncertainties in either subsystem,such as wind fluctuations or component failures,could have a magnified impact on the reliability of the whole system due to energy interactions.A joint reserve scheduling model considering the cross-sectorial impacts of operation uncertainties is essential but still insufficient to guarantee the reliable operation of the integrated electricity and natural gas system(IEGS).Therefore,this paper proposes a day-ahead security-constrained unit commitment(SCUC)model for the IEGS to schedule the operation and reserve simultaneously considering reliability requirements.Firstly,the multi-state models for generating units and gas wells are established.Based on the multi-state models,the expected unserved energy cost(EUEC)and the expected wind curtailment cost(EWC)criteria are proposed based on probabilistic methods considering wind fluctuation and random failures of components in IEGS.Furthermore,the EUEC and EWC criteria are incorporated into the day-ahead SCUC model,which is nonconvex and mathematically reformulated into a solvable mixed-integer second-order cone programming(MISOCP)problem.The proposed model is validated using an IEEE 30-bus system and Belgium 20-node natural gas system.Numerical results demonstrate that the proposed model can effectively schedule the energy reserve to guarantee the reliable operation of the IEGS considering the multiple uncertainties in different subsystems and the cross-sectorial failure propagation.
基金supported in part by the National Key R&D Program of China(2018YFB0905000)the Science and Technology Project of the State Grid Corporation of China(SGTJDK 00DWJS1800232)。
文摘How to effectively use the multi-energy demand elasticity of users to bid in the multi-energy market and formulate multi-energy retail packages is an urgent problem which needs to be solved by integrated energy service providers(IESPs)to attract more users and reduce operating costs.This paper presents a unified clearing of electricity and natural gas based on a bi-level bidding and multi-energy retail price formulation method for IESPs considering multi-energy demand elasticity.First,we propose an operating structure of IESPs in the wholesale and retail energy markets.The multi-energy demand elasticity model of retail-side users and a retail price model for electricity,gas,heat and cooling are established.Secondly,a bi-level bidding model for IESPs considering multi-energy demand elasticity is established to provide IESPs with wholesale-side bidding decisions and retail-side energy retail price decisions.Finally,an example is given to verify the proposed method.The results show that the method improves the total social welfare of the electricity and natural gas markets by 7.99%and the profit of IESPs by 1.40%.It can reduce the variance of the electricity,gas,and cooling load curves,especially the reduction of the variance of the electricity load curve can which reach 79.90%.It can be seen that the research in this paper has a positive effect on repairing the limitations of integrated energy trading research and improving the economics of the operation of IESPs.
基金This work was supported by the National Natural Science Foundation of China(No.51777077)Thai Nguyen University of Technology(TNUT),Thai Nguyen,Vietnam.
文摘This study proposes an optimized model of a micro-energy network(MEN)that includes electricity and natural gas with integrated solar,wind,and energy storage systems(ESSs).The proposed model is based on energy hubs(EHs)and it aims to minimize operation costs and greenhouse emissions.The research is motivated by the increasing use of renewable energies and ESSs for secure energy supply while reducing operation costs and environment effects.A general algebraic modeling system(GAMS)is used to solve the optimal operation problem in the MEN.The results demonstrate that an optimal MEN formed by multiple EHs can provide appropriate and flexible responses to fluctuations in electricity prices and adjustments between time periods and seasons.It also yields significant reductions in operation costs and emissions.The proposed model can contribute to future research by providing a more efficient network model(as compared with the traditional electricity supply system)to scale down the environmental and economic impacts of electricity storage and supply systems on MEN operation.