期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
ELEMENT-BY-ELEMENT MATRIX DECOMPOSITION ANDSTEP-BY-STEP INTEGRATION METHOD FOR TRANSIENTDYNAMIC PROBLEMS
1
作者 王怀忠 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1995年第11期1039-1045,共7页
In this paper a general matrix decomposition scheme as well as an element-by-clement relaxation algorithm combined with step-by -step integration method is presented for transient dynamic problems thus the finite elem... In this paper a general matrix decomposition scheme as well as an element-by-clement relaxation algorithm combined with step-by -step integration method is presented for transient dynamic problems thus the finite element method can be fromforming global stiffness matrix global mass matrix as well as solyin large scale sparse equations Theory analysis and numerical results show that the presented matrix decomposition scheme is the optimal one The presented algoithm has else physicalmeaning and can be busily applied to finite element codes 展开更多
关键词 finite element method . step-hy-step integration matrixdecomposition . element -by-element relaxation
下载PDF
Numerical quadrature for singular and near-singular integrals of boundary element method and its applications in large-scale acoustic problems 被引量:4
2
作者 GONG Jiayuan AN Junying +1 位作者 MA Li XU Haiting 《Chinese Journal of Acoustics》 CSCD 2017年第3期289-301,共13页
The numerical quadrature methods for dealing with the problems of singular and near-singular integrals caused by Burton-Miller method are proposed, by which the conventional and fast multipole BEMs (boundary element ... The numerical quadrature methods for dealing with the problems of singular and near-singular integrals caused by Burton-Miller method are proposed, by which the conventional and fast multipole BEMs (boundary element methods) for 3D acoustic problems based on constant elements are improved. To solve the problem of singular integrals, a Hadamard finite-part integral method is presented, which is a simplified combination of the methods proposed by Kirkup and Wolf. The problem of near-singular integrals is overcome by the simple method of polar transformation and the more complex method of PART (Projection and Angular & Radial Transformation). The effectiveness of these methods for solving the singular and near-singular problems is validated through comparing with the results computed by the analytical method and/or the commercial software LMS Virtual.Lab. In addition, the influence of the near-singular integral problem on the computational precisions is analyzed by computing the errors relative to the exact solution. The computational complexities of the conventional and fast multipole BEM are analyzed and compared through numerical computations. A large-scale acoustic scattering problem, whose degree of freedoms is about 340,000, is implemented successfully. The results show that, the near singularity is primarily introduced by the hyper-singular kernel, and has great influences on the precision of the solution. The precision of fast multipole BEM is the same as conventional BEM, but the computational complexities are much lower. 展开更多
关键词 BEM Numerical quadrature for singular and near-singular integrals of boundary element method and its applications in large-scale acoustic problems
原文传递
NUMERICAL PREDICTION OF PROPELLER EXCITED ACOUSTIC RESPONSE OF SUBMARINE STRUCTURE BASED ON CFD,FEM AND BEM 被引量:5
3
作者 WEI Ying-san WANG Yong-sheng +1 位作者 CHANG Shu-ping FU Jian 《Journal of Hydrodynamics》 SCIE EI CSCD 2012年第2期207-216,共10页
A mesh-less Refined Integral Algorithm (RIA) of Boundary Element Method (BEM) is proposed to accurately solve the Helmholtz Integral Equation (HIE).The convergence behavior and the practicability of the method a... A mesh-less Refined Integral Algorithm (RIA) of Boundary Element Method (BEM) is proposed to accurately solve the Helmholtz Integral Equation (HIE).The convergence behavior and the practicability of the method are validated.Computational Fluid Dynamics (CFD),Finite Element Method (FEM) and RIA are used to predict the propeller excited underwater noise of the submarine hull structure.Firstly the propeller and submarine's flows are independently validated,then the self propulsion of the "submarine+propeller" system is simulated via CFD and the balanced point of the system is determined as well as the self propulsion factors.Secondly,the transient response of the "submarine+ propeller" system is analyzed at the balanced point,and the propeller thrust and torque excitations are calculated.Thirdly the thrust and the torque excitations of the propeller are loaded on the submarine,respectively,to calculate the acoustic response,and the sound power and the main peak frequencies are obtained.Results show that:(1) the thrust mainly excites the submarine axial mode and the high frequency area appears at the two conical-type ends,while the torque mainly excites the circumferential mode and the high frequency area appears at the broadside of the cylindrical section,but with rather smaller sound power and radiation efficiency than the former,(2) the main sound source appears at BPF and 2BPF and comes from the harmonic propeller excitations.So,the main attention should be paid on the thrust excitation control for the sound reduction of the propeller excited submarine structure. 展开更多
关键词 SUBMARINE propeller excitation self propulsion underwater noise Computational Fluid Dynamics (CFD) Finite element method (FEM) and Refined Integral Algorithm (RIA)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部