期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Impact of interconnections and renewable energy integration on the Philippine-Sabah Power Grid systems
1
作者 Tristan G.Magallones,Jr. Jai Govind Singh 《Global Energy Interconnection》 EI CSCD 2023年第3期253-272,共20页
This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(... This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented. 展开更多
关键词 Modeling of ASEAN power Grid Rotor angle stability of asynchronous Philippine-Sabah interconnection in ASEAN power Grid The impact of renewable energy integration on Philippine-Sabah interconnection in ASEAN power Grid
下载PDF
Market-oriented Optimal Dispatching Strategy for a Wind Farm with a Multiple Stage Hybrid Energy Storage System 被引量:17
2
作者 Zhenyuan Zhang Yun Zhang +1 位作者 Qi Huang Wei-Jen Lee 《CSEE Journal of Power and Energy Systems》 SCIE 2018年第4期417-424,共8页
With the increased promotion of integrated energy power systems(IEPS),renewable energy and energy storage systems(ESS)play a more important role.However,the fluctuation and intermittent nature of wind not only results... With the increased promotion of integrated energy power systems(IEPS),renewable energy and energy storage systems(ESS)play a more important role.However,the fluctuation and intermittent nature of wind not only results in substantial reliability and stability defects,but it also weakens the competitiveness of wind generation in the electric power market.Meanwhile,the way to further enhance the system reliability effectively improving market profits of wind farms is one of the most important aspects of Wind-ESS joint operational design.In this paper,a market-oriented optimized dispatching strategy for a wind farm with a multiple stage hybrid ESS is proposed.The first stage ESS is designed to improve the profits of wind generation through day-ahead market operations,the real-time marketbased second stage ESS is focused on day-ahead forecasting error elimination and wind power fluctuation smoothing,while the backup stage ESS is associated with them to provide the ancillary service.An interval forecasting method is adopted to help to ensure reliable forecast results of day-ahead wind power,electricity prices and loads.With this hybrid ESS design,supply reliability and market profits are simultaneously achieved for wind farms. 展开更多
关键词 Dispatching optimization energy storage integrated energy power systems interval forecasting power market p2g wind power generation
原文传递
Low-carbon Operation of Combined Heat and Power Integrated Plants Based on Solar-assisted Carbon Capture 被引量:15
3
作者 Xusheng Guo Suhua Lou +1 位作者 Yaowu Wu Yongcan Wang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第5期1138-1151,共14页
Accelerating the development of renewable energy and reducing CO_(2)emissions have become a general consensus and concerted action of all countries in the world. The electric power industry, especially thermal power i... Accelerating the development of renewable energy and reducing CO_(2)emissions have become a general consensus and concerted action of all countries in the world. The electric power industry, especially thermal power industry, is the main source for fossil energy consumption and CO_(2)emissions. Since solvent-based post-combustion carbon capture technology would bring massive extra energy consumption, the application of solar-assisted carbon capture technology has attracted extensive attention. Due to the important role of coal-fired combined heat and power plants for serving residential and industrial heating districts, in this paper, the low-carbon operation benefits of combined heat and power integrated plants based on solar-assisted carbon capture(CHPIP-SACC) are fully evaluated in heat and power integrated energy system with a high proportion of wind power. Based on the selected integration scheme, a linear operation model of CHPIP-SACC is developed considering energy flow characteristics and thermal coupling interaction of its internal modules. From the perspective of system-level operation optimization, the day-ahead economic dispatch problem based on a mix-integer linear programming model is presented to evaluate the low-carbon benefits of CHPIP-SACC during annual operation simulation. The numerical simulations on a modified IEEE 39-bus system demonstrate the effectiveness of CHPIP-SACC for reducing CO_(2)emissions as well as increasing the downward flexibility. The impact of different solar field areas and unit prices of coal on the low-carbon operation benefits of CHPIP-SACC is studied in the section of sensitivity analysis. 展开更多
关键词 Solar-assisted carbon capture CO_(2)emission reduction combined heat and power integrated plant heat and power integrated energy system wind power
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部