An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the...An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the substrate medium,we design a circular microstrip antenna,which can achieve a bandwidth of 140 MHz at Zeeman splitting frequency of 2.87 GHz,specifically suitable for NV center experiments.Subsequently,this antenna is seamlessly fixed at a three-dimensional-printed cylindrical support,allowing the optical fiber tip to extend out of a dedicated aperture.To mitigate errors originating from processing,precise tuning within a narrow range can be achieved by adjusting the conformal amplitude.Finally,we image the microwave magnetic field around the integrated probe with high resolution,and determine the suitable area for placing the fiber tip(SAP).展开更多
The China seas and adjacent areas contain numerous petroleum basins.One of the main challenges for future oil and gas exploration is to identify the inherent patterns of petroleum basin distribution.The formation and ...The China seas and adjacent areas contain numerous petroleum basins.One of the main challenges for future oil and gas exploration is to identify the inherent patterns of petroleum basin distribution.The formation and evolution of petroleum basins along with the migration and accumulation of oil and gas are often closely related to the tectonic environment.The gravity and magnetic fields with high lateral resolution and wide coverage provide important data for regional tectonic research.Based on the gravity data in the Global Satellite Gravity Anomaly Database(V31.1)and magnetic data from the Earth Magnetic Anomaly Grid(2-arc-minute resolution)(V2),this study uses integrated gravity and magnetic field technique to obtain integrated gravity and magnetic field result for the China seas and adjacent areas,and then adopts the normalized vertical derivative of the total horizontal derivative technique to conduct partition.Finally,it identifies the relationship between the partition characteristics and tectonics as well as the patterns of petroleum basin occurrence.The research shows that the partition of gravity and magnetic field integrated result has a good correlation with the Neo-Cathaysian tectonic system and tectonic units.The petroleum basins are characterized according to three blocks arranged from north to south and four zones arranged from east to west.The north-south block structure causes the uneven distribution of oil and gas resources in the mainland area and the differences in the hydrocarbon-bearing strata.Petroleum basins are more abundant in the north than in the south.The ages of the main oil-and gas-bearing strata are“Paleozoic–Mesozoic,Paleozoic–Mesozoic–Cenozoic,and Paleozoic–Mesozoic”,in order from north to south.The difference in the overall type of oil and gas resources in all basins is controlled by the east–west zonation.From east to west,the oil and gas resource type exhibits a wave-like pattern of“oil and gas,gas,oil and gas,gas”.The vertical distribution is characterized by an upper oil(Mesozoic–Cenozoic)and lower gas(Mesozoic–Paleozoic)structure.Within the study area,the Paleozoic marine strata should be the main strata of future natural gas exploration.展开更多
Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have ...Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.展开更多
A kind of 2-phase interleaving coupled magnetic integrated VRM is studied and the corresponding passivity-based control strategy is put forward. The model of this kind of magnetic integrated VRM is constructed, and th...A kind of 2-phase interleaving coupled magnetic integrated VRM is studied and the corresponding passivity-based control strategy is put forward. The model of this kind of magnetic integrated VRM is constructed, and the performance of this 2-phase interleaving magnetic integrated VRM of passivity-based control is verified by simulation experiments. The results proved that this kind of passivity-based control strategy can decrease the steady state current ripple and the dynamic output voltage under load disturbance.展开更多
25 May 2012, Shenzhen- ZTE Corporation has been awarded the Best Integrated IMS Solution Award at IMS World Forum 2012 in Madrid. ZTE was awarded for its IMS-based legacy voice service (PSTN/ISDN) emulation solution...25 May 2012, Shenzhen- ZTE Corporation has been awarded the Best Integrated IMS Solution Award at IMS World Forum 2012 in Madrid. ZTE was awarded for its IMS-based legacy voice service (PSTN/ISDN) emulation solution, which has been deployed in 80 commercial networks worldwide.展开更多
A portable microcomputer-controlled inspection system has been developed for detection of magnetic properties of soft magnetic materials. It incorporates custom designed software for control of the magnetic field duri...A portable microcomputer-controlled inspection system has been developed for detection of magnetic properties of soft magnetic materials. It incorporates custom designed software for control of the magnetic field during operation such as demagnetization, field sweeping, and for data logging and analysis. Results are recorded using a 12-bit analog to digital converter and are then stored on disk. The magnetic hysteresis loop and Barkhausen noise data can be converted into important magnetic parameters: coecivity, remanence, and hysteresis loss, Barkhausen amplitude, and Barkhausen noise energy. This system incorporated with the magnetostriction, and magnetoacoustic emission, is then related with the nondestructive detection of material degradation.展开更多
A novel magnetic integrated controllable reactor of transformer type(CRT)has the advantages of simple structure,flexible assembly,convenient maintenance and practicability.To analyze its operation characteristics accu...A novel magnetic integrated controllable reactor of transformer type(CRT)has the advantages of simple structure,flexible assembly,convenient maintenance and practicability.To analyze its operation characteristics accurately,we establish corresponding equivalent mathematical model considering magnetic leakage based on magnetic circuit and circuit dualistic transformation method.The distribution of magnetic leakage field of each winding is analyzed qualitatively,and the analytical calculation formulas of magnetizing inductance and leakage inductance of each winding are derived.Based on this,the analytical calculation formulas of short-circuit impedance and winding current of CRT under different working conditions are derived.The field-circuit coupling finite element model of the magnetic integrated CRT is established to simulate the current of each winding under different working conditions.The results show that the analytical calculation results of each winding current have good consistency with the finite element calculation results,indicating the validity of CRT equivalent mathematical model and correctness of the analytical formulas of leakage inductance,short-circuit impedance and winding current of CRT.The working winding current of CRT is increasing gradually with the operation of control winding in turn to realise the transition of CRT compensation capacity from zero to a rated value.展开更多
The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tra...The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tracking.In the IPACS,the configuration design of IPACS is usually not considered,and the coupled problem between two flywheels during the attitude control and energy storage has not been resolved.In this paper,an integrated power and single axis attitude control system using two counter rotating magnetically suspended flywheels mounted to an air table is designed.The control method of power and attitude control using flywheel is investigated and the coupling problem between energy storage and attitude control is resolved.A computer simulation of an integrated power and single axis attitude control system with two flywheels is performed,which consists of two counter rotating magnetically suspended flywheels mounted to an air rotary table.Both DC bus and a single axis attitude are the regulation goals.An attitude & DC bus coordinator is put forward to separate DC bus regulation and attitude control problems.The simulation results of DC bus regulation and attitude control are presented respectively with a DC bus regulator and a simple PD attitude controller.The simulation results demonstrate that it is possible to integrate power and attitude control simultaneously for satellite using flywheels.The proposed research provides theory basis for design of the IPACS.展开更多
The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage mod...The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage model is affected by integral initial values and integral drift,that based on current model is affected by the parameters of PMSM,so a new stator flux observation method is proposed based on an improved secondorder generalized integrator( SOGI). Compared to the stator flux observation method based on the conventional SOGI,the proposed method can not only overcome the influence of integral initial values and integral drift,but also completely eliminate the DC offset's influence. Therefore,the observation accuracy of stator flux is further improved. The simulation and experimental results both show that the proposed method has a higher stator flux and electromagnetic torque observation precision.展开更多
Diffusion tensor tractography allows visualization of the corticospinal tract (CST) in three dimensions. Transcranial magnetic stimulation offers a unique advantage in that it can distinguish between the corticospin...Diffusion tensor tractography allows visualization of the corticospinal tract (CST) in three dimensions. Transcranial magnetic stimulation offers a unique advantage in that it can distinguish between the corticospinal tract and the non-CST by analyzing the characteristics of a motor-evoked potential. A 15 year-old female showed right hemiparesis, due to intracerebral hemorrhage in the left corona radiata, and the posterior limb of the internal capsule. Diffusion tensor tractography revealed that the tracts of both hemispheres originated from the precentral gyrus, and descended through the known CST pathway. Specifically, the tract of the affected hemisphere descended through an isolated area in the leukomalactic lesion at the posterior limb level. In addition, the characteristics of the motor-evoked potential obtained from the right hand when stimulating the hot spot of the left motor cortex corresponded to a CST. In conclusion, we report on a patient with intracerebral hemorrhage who showed an isolated CST in a leukomalactic lesion. This result suggests the importance of saving the adjacent area or penumbra around a hematoma after an intracerebral hemorrhage.展开更多
Magnetic measurement and diagnostics are critical for the operation of magnetic confinement experimental facilities and plasma analysis, while differential signals are mostly detected by a detector. For this, we have ...Magnetic measurement and diagnostics are critical for the operation of magnetic confinement experimental facilities and plasma analysis, while differential signals are mostly detected by a detector. For this, we have developed and designed a stable and reliable data integration system for HL-2M magnetic measurement and magnetic diagnostics. The system will be used for realtime control of HL-2M after the construction of HL-2M is completed. The system is built based on the PXI platform, and the software system is based on the LABVIEW platform. Key technologies realized by the system primarily include drift compensation, pulse data acquisition technology, multi-threading processing technology and transmission control communication protocol. Trials of the system were successfully carried out on HL-2A, and the results showed that the system could fully meet the construction needs of HL-2M.展开更多
The upper vertical stability (VS) feeder is a part connected to the upper VS coil by a welding joint. The function of the feeder is to transfer current and coolant water to the VS coil. A giant electron^agnetic forc...The upper vertical stability (VS) feeder is a part connected to the upper VS coil by a welding joint. The function of the feeder is to transfer current and coolant water to the VS coil. A giant electron^agnetic force will be generated during normal operation by the current flowing in the VS coils, interacting with the external background field. The Lorentz force will induce Tresca stress in the feeder. The amplitudes of the magnetic field and Lorentz force along the conductor running direction have been calculated based on Maxwell's equations. To extract the Tresca stress in the feeder, a finite element model was created using the software ANSYS and an electromagnetic load was applied on the model. According to the analytical design, the stresses were classified and evaluated based on ASME. In order to reduce the Tresca stress, some optimization works have been done and the Tresca stress has had a significant reduction in the optimized model. This analytical work figured out the stress distribution in the feeder and checked the feasibility of the prototype design model. The ANSYS analysis results will provide a guidance for later improvement and fabrication.展开更多
The sample was prepared by implanting Mn^(+) ions at energy of 80keV and Mn^(+) ions of dose of 2×1017/cm^(2) directly into the semi-insulating(100)GaAs wafer,followed by rapid annealing at 830℃ for 90s.By using...The sample was prepared by implanting Mn^(+) ions at energy of 80keV and Mn^(+) ions of dose of 2×1017/cm^(2) directly into the semi-insulating(100)GaAs wafer,followed by rapid annealing at 830℃ for 90s.By using magnetic force microscopy,both the topographic and magnetic force images of the submicron particles in the surface layer of the sample were obtained.The formation of the magnetic particles is more complex,corresponding to more types of magnetic force image patterns.Computer simulation was carried out by integrating the interactions between the tip and the particles,which can be used to judge the magnetization direction of particles more accurately.Moreover,the simulation has confirmed that all submicron magnetic particles are single crystals with a single domain.In fact,the simulated patterns of the single-domain particles are the“elemental”magnetic force patterns for magnetic materials,hence their acquirement and collection are the basis of the analysis and explanation of magnetic force images.展开更多
The objective of this work is to present a boundary integral formulation for the static, linear plane strain problem of uncoupled magneto-elasticity for an infinite magnetizable cylinder in a transverse magnetic field...The objective of this work is to present a boundary integral formulation for the static, linear plane strain problem of uncoupled magneto-elasticity for an infinite magnetizable cylinder in a transverse magnetic field. This formulation allows to obtain analytical solutions in closed form for problems with relatively simple geometries, in addition to being particularly well-adapted to numerical approaches for more complicated cases. As an application, the first fundamental problem of Elasticity for the circular cylinder is investigated.展开更多
In this paper Substrate Integrated Waveguide-basedfiltenna operating at Ku band is proposed.The model is designed on a low loss dielectric substrate having a thickness of 0.508 mm and comprises of shorting vias along ...In this paper Substrate Integrated Waveguide-basedfiltenna operating at Ku band is proposed.The model is designed on a low loss dielectric substrate having a thickness of 0.508 mm and comprises of shorting vias along two edges of the substrate walls.To realize a bandpassfilter,secondary shorting vias are placed close to primary shorting vias.The dimension and position of the vias are carefully analyzed for Ku band frequencies.The model is fabricated on Roger RT/duroid 5880 and the performance characteristics are measured.The proposed model achieves significant impedance characteristics with wider bandwidth in the Ku band.The model also achieves a maximum gain of 7.46 dBi in the operating band thus making it suitable for Ku-band applications.Substrate Integrated Waveguide(SIW)Structures possess most of the advantages over conventional radiofrequency waveguides since they have high power management capacity with self-consistent electrical shielding.The most noteworthy advantage of SIW,it can able to integrate all the components on the same substrate,both passive and active components.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB2012600)the Science and Technology Plan Project of State Administration of Market Regulation,China(Grant No.2021MK039)。
文摘An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the substrate medium,we design a circular microstrip antenna,which can achieve a bandwidth of 140 MHz at Zeeman splitting frequency of 2.87 GHz,specifically suitable for NV center experiments.Subsequently,this antenna is seamlessly fixed at a three-dimensional-printed cylindrical support,allowing the optical fiber tip to extend out of a dedicated aperture.To mitigate errors originating from processing,precise tuning within a narrow range can be achieved by adjusting the conformal amplitude.Finally,we image the microwave magnetic field around the integrated probe with high resolution,and determine the suitable area for placing the fiber tip(SAP).
基金The Scientific and Technological Project of CNOOC Research Institute Co.,Ltd.,under contract No.CCL2021RCPS0167KQN。
文摘The China seas and adjacent areas contain numerous petroleum basins.One of the main challenges for future oil and gas exploration is to identify the inherent patterns of petroleum basin distribution.The formation and evolution of petroleum basins along with the migration and accumulation of oil and gas are often closely related to the tectonic environment.The gravity and magnetic fields with high lateral resolution and wide coverage provide important data for regional tectonic research.Based on the gravity data in the Global Satellite Gravity Anomaly Database(V31.1)and magnetic data from the Earth Magnetic Anomaly Grid(2-arc-minute resolution)(V2),this study uses integrated gravity and magnetic field technique to obtain integrated gravity and magnetic field result for the China seas and adjacent areas,and then adopts the normalized vertical derivative of the total horizontal derivative technique to conduct partition.Finally,it identifies the relationship between the partition characteristics and tectonics as well as the patterns of petroleum basin occurrence.The research shows that the partition of gravity and magnetic field integrated result has a good correlation with the Neo-Cathaysian tectonic system and tectonic units.The petroleum basins are characterized according to three blocks arranged from north to south and four zones arranged from east to west.The north-south block structure causes the uneven distribution of oil and gas resources in the mainland area and the differences in the hydrocarbon-bearing strata.Petroleum basins are more abundant in the north than in the south.The ages of the main oil-and gas-bearing strata are“Paleozoic–Mesozoic,Paleozoic–Mesozoic–Cenozoic,and Paleozoic–Mesozoic”,in order from north to south.The difference in the overall type of oil and gas resources in all basins is controlled by the east–west zonation.From east to west,the oil and gas resource type exhibits a wave-like pattern of“oil and gas,gas,oil and gas,gas”.The vertical distribution is characterized by an upper oil(Mesozoic–Cenozoic)and lower gas(Mesozoic–Paleozoic)structure.Within the study area,the Paleozoic marine strata should be the main strata of future natural gas exploration.
文摘Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.
文摘A kind of 2-phase interleaving coupled magnetic integrated VRM is studied and the corresponding passivity-based control strategy is put forward. The model of this kind of magnetic integrated VRM is constructed, and the performance of this 2-phase interleaving magnetic integrated VRM of passivity-based control is verified by simulation experiments. The results proved that this kind of passivity-based control strategy can decrease the steady state current ripple and the dynamic output voltage under load disturbance.
文摘25 May 2012, Shenzhen- ZTE Corporation has been awarded the Best Integrated IMS Solution Award at IMS World Forum 2012 in Madrid. ZTE was awarded for its IMS-based legacy voice service (PSTN/ISDN) emulation solution, which has been deployed in 80 commercial networks worldwide.
基金Reactor Pressure Boundary Materials Project !under the Nuclear R & D Program by MOST in Korea.
文摘A portable microcomputer-controlled inspection system has been developed for detection of magnetic properties of soft magnetic materials. It incorporates custom designed software for control of the magnetic field during operation such as demagnetization, field sweeping, and for data logging and analysis. Results are recorded using a 12-bit analog to digital converter and are then stored on disk. The magnetic hysteresis loop and Barkhausen noise data can be converted into important magnetic parameters: coecivity, remanence, and hysteresis loss, Barkhausen amplitude, and Barkhausen noise energy. This system incorporated with the magnetostriction, and magnetoacoustic emission, is then related with the nondestructive detection of material degradation.
基金Weinan Science and Technology Plan Project(No.2020ZDYF-JCYJ-177)General Special Scientific Research Projects of Education Department of Shaanxi Provincial Government(No.21JK0582)+2 种基金Young and Middle-aged Scientific and Technological Talents Project of Shaanxi Railway Institute(No.KJRC202001)Scientific Research Fund Project of Shaanxi Railway Institute(No.KY2021-34)Science and Technology Innovation Team of Shaanxi Railway Institute(No.KJTD201901)。
文摘A novel magnetic integrated controllable reactor of transformer type(CRT)has the advantages of simple structure,flexible assembly,convenient maintenance and practicability.To analyze its operation characteristics accurately,we establish corresponding equivalent mathematical model considering magnetic leakage based on magnetic circuit and circuit dualistic transformation method.The distribution of magnetic leakage field of each winding is analyzed qualitatively,and the analytical calculation formulas of magnetizing inductance and leakage inductance of each winding are derived.Based on this,the analytical calculation formulas of short-circuit impedance and winding current of CRT under different working conditions are derived.The field-circuit coupling finite element model of the magnetic integrated CRT is established to simulate the current of each winding under different working conditions.The results show that the analytical calculation results of each winding current have good consistency with the finite element calculation results,indicating the validity of CRT equivalent mathematical model and correctness of the analytical formulas of leakage inductance,short-circuit impedance and winding current of CRT.The working winding current of CRT is increasing gradually with the operation of control winding in turn to realise the transition of CRT compensation capacity from zero to a rated value.
基金supported by National Natural Science Foundation of China (Grant No. 60704025)
文摘The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tracking.In the IPACS,the configuration design of IPACS is usually not considered,and the coupled problem between two flywheels during the attitude control and energy storage has not been resolved.In this paper,an integrated power and single axis attitude control system using two counter rotating magnetically suspended flywheels mounted to an air table is designed.The control method of power and attitude control using flywheel is investigated and the coupling problem between energy storage and attitude control is resolved.A computer simulation of an integrated power and single axis attitude control system with two flywheels is performed,which consists of two counter rotating magnetically suspended flywheels mounted to an air rotary table.Both DC bus and a single axis attitude are the regulation goals.An attitude & DC bus coordinator is put forward to separate DC bus regulation and attitude control problems.The simulation results of DC bus regulation and attitude control are presented respectively with a DC bus regulator and a simple PD attitude controller.The simulation results demonstrate that it is possible to integrate power and attitude control simultaneously for satellite using flywheels.The proposed research provides theory basis for design of the IPACS.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51377041)
文摘The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage model is affected by integral initial values and integral drift,that based on current model is affected by the parameters of PMSM,so a new stator flux observation method is proposed based on an improved secondorder generalized integrator( SOGI). Compared to the stator flux observation method based on the conventional SOGI,the proposed method can not only overcome the influence of integral initial values and integral drift,but also completely eliminate the DC offset's influence. Therefore,the observation accuracy of stator flux is further improved. The simulation and experimental results both show that the proposed method has a higher stator flux and electromagnetic torque observation precision.
基金National Research Foundation Grant funded by the Korean Gov-ernment, No. KRF-2008-314-E00173
文摘Diffusion tensor tractography allows visualization of the corticospinal tract (CST) in three dimensions. Transcranial magnetic stimulation offers a unique advantage in that it can distinguish between the corticospinal tract and the non-CST by analyzing the characteristics of a motor-evoked potential. A 15 year-old female showed right hemiparesis, due to intracerebral hemorrhage in the left corona radiata, and the posterior limb of the internal capsule. Diffusion tensor tractography revealed that the tracts of both hemispheres originated from the precentral gyrus, and descended through the known CST pathway. Specifically, the tract of the affected hemisphere descended through an isolated area in the leukomalactic lesion at the posterior limb level. In addition, the characteristics of the motor-evoked potential obtained from the right hand when stimulating the hot spot of the left motor cortex corresponded to a CST. In conclusion, we report on a patient with intracerebral hemorrhage who showed an isolated CST in a leukomalactic lesion. This result suggests the importance of saving the adjacent area or penumbra around a hematoma after an intracerebral hemorrhage.
基金supported by National Natural Science Foundation of China(No.1157518)
文摘Magnetic measurement and diagnostics are critical for the operation of magnetic confinement experimental facilities and plasma analysis, while differential signals are mostly detected by a detector. For this, we have developed and designed a stable and reliable data integration system for HL-2M magnetic measurement and magnetic diagnostics. The system will be used for realtime control of HL-2M after the construction of HL-2M is completed. The system is built based on the PXI platform, and the software system is based on the LABVIEW platform. Key technologies realized by the system primarily include drift compensation, pulse data acquisition technology, multi-threading processing technology and transmission control communication protocol. Trials of the system were successfully carried out on HL-2A, and the results showed that the system could fully meet the construction needs of HL-2M.
文摘The upper vertical stability (VS) feeder is a part connected to the upper VS coil by a welding joint. The function of the feeder is to transfer current and coolant water to the VS coil. A giant electron^agnetic force will be generated during normal operation by the current flowing in the VS coils, interacting with the external background field. The Lorentz force will induce Tresca stress in the feeder. The amplitudes of the magnetic field and Lorentz force along the conductor running direction have been calculated based on Maxwell's equations. To extract the Tresca stress in the feeder, a finite element model was created using the software ANSYS and an electromagnetic load was applied on the model. According to the analytical design, the stresses were classified and evaluated based on ASME. In order to reduce the Tresca stress, some optimization works have been done and the Tresca stress has had a significant reduction in the optimized model. This analytical work figured out the stress distribution in the feeder and checked the feasibility of the prototype design model. The ANSYS analysis results will provide a guidance for later improvement and fabrication.
文摘The sample was prepared by implanting Mn^(+) ions at energy of 80keV and Mn^(+) ions of dose of 2×1017/cm^(2) directly into the semi-insulating(100)GaAs wafer,followed by rapid annealing at 830℃ for 90s.By using magnetic force microscopy,both the topographic and magnetic force images of the submicron particles in the surface layer of the sample were obtained.The formation of the magnetic particles is more complex,corresponding to more types of magnetic force image patterns.Computer simulation was carried out by integrating the interactions between the tip and the particles,which can be used to judge the magnetization direction of particles more accurately.Moreover,the simulation has confirmed that all submicron magnetic particles are single crystals with a single domain.In fact,the simulated patterns of the single-domain particles are the“elemental”magnetic force patterns for magnetic materials,hence their acquirement and collection are the basis of the analysis and explanation of magnetic force images.
文摘The objective of this work is to present a boundary integral formulation for the static, linear plane strain problem of uncoupled magneto-elasticity for an infinite magnetizable cylinder in a transverse magnetic field. This formulation allows to obtain analytical solutions in closed form for problems with relatively simple geometries, in addition to being particularly well-adapted to numerical approaches for more complicated cases. As an application, the first fundamental problem of Elasticity for the circular cylinder is investigated.
文摘In this paper Substrate Integrated Waveguide-basedfiltenna operating at Ku band is proposed.The model is designed on a low loss dielectric substrate having a thickness of 0.508 mm and comprises of shorting vias along two edges of the substrate walls.To realize a bandpassfilter,secondary shorting vias are placed close to primary shorting vias.The dimension and position of the vias are carefully analyzed for Ku band frequencies.The model is fabricated on Roger RT/duroid 5880 and the performance characteristics are measured.The proposed model achieves significant impedance characteristics with wider bandwidth in the Ku band.The model also achieves a maximum gain of 7.46 dBi in the operating band thus making it suitable for Ku-band applications.Substrate Integrated Waveguide(SIW)Structures possess most of the advantages over conventional radiofrequency waveguides since they have high power management capacity with self-consistent electrical shielding.The most noteworthy advantage of SIW,it can able to integrate all the components on the same substrate,both passive and active components.