Unconventional oil and gas resources have become the most important and realistic field for increasing China’s domestic oil and gas reserves and production.At present,the production scale does not match the massive a...Unconventional oil and gas resources have become the most important and realistic field for increasing China’s domestic oil and gas reserves and production.At present,the production scale does not match the massive amount of resources and the rapid growth of proven geological reserves.The challenges of technology,cost,management,and methodology restrict large-scale and economic development.Based on successful practices,a"one engine with six gears"system engineering methodology is put forward,which includes life-cycle management,overall synergy,interdisciplinary cross-service integration,marketoriented operation,socialized support,digitalized management,and low-carbon and green development.The methodology has been proved to be effective in multiple unconventional oil and gas national demonstration areas,including the Jimusar continental shale oil demonstration area.Disruptive views are introduced-namely,that unconventional oil and gas do not necessarily yield a low return,nor do they necessarily have a low recovery factor.A determination to achieve economic benefit must be a pervasive underlying goal for managers and experts.Return and recovery factors,as primary focuses,must be adhered to during China’s development of unconventional oil and gas.The required methodology transformation includes a revolution in management systems to significantly decrease cost and increase production,resulting in technological innovation.展开更多
Many years experience of the operation of high stress (>72% specified minimum yield strength, SMYS) gas pipelines and statistical analysis results of pipeline incidents showed that the operating pipelines at stress...Many years experience of the operation of high stress (>72% specified minimum yield strength, SMYS) gas pipelines and statistical analysis results of pipeline incidents showed that the operating pipelines at stress levels over 72% SMYS have not presented problems in USA and Canada, and design factor does not control incidents or the safety of pipelines. Enhancing pipeline safety management level is most important for decreasing incident rate. The application history of higher design factors in the U.S and Canada was reviewed. And the effect of higher factors to the critical flaw size, puncture resistance, change of reliability with time, risk level and the arrest toughness requirements of pipeline were analyzed here. The comparison of pipeline failure rates and risk levels between two design factors (0.72 and 0.8) has shown that a change in design factor from 0.72 to 0.8 would bring little effect on failure rates and risk levels. On the basis of the analysis result, the application feasibility of design factor of 0.8 in China was discussed and the related suggestions were proposed. When an operator wishes to apply design factor 0.8 to gas pipeline, the following process is recommended: stress level of line pipe hydro test should be up to 100% SMYS, reliability and risk assessment at the design feasibility or conceptual stage should be conducted, Charpy impact energy should meet the need of pipeline crack arrest; and establish and execute risk based integrity management plan. The technology of pipeline steel metallurgy, line pipe fabrication and pipeline construction, and line pipe quality control level in China achieved tremendous progresses, and line pipe product standards and property indexes have come up to international advanced level. Furthermore, pipeline safety management has improved greatly in China. Consequently, the research for the feasibility of application of design factor of 0.8 in China has fundamental basis.展开更多
Plant maintenance has been a discipline that has gradually evolved with the industrial revolution. For quite some time, it has been a "necessary evil" in production, manufacturing, and process settings. The changing...Plant maintenance has been a discipline that has gradually evolved with the industrial revolution. For quite some time, it has been a "necessary evil" in production, manufacturing, and process settings. The changing business needs and industrial conditions have had various impacts on the maintenance process, particularly over the last few years. While some industries have inherent difficulties seeing what maintenance is all about, others have begun to add more flavor to the organizational maintenance practices. This article brings an overview of developments within the offshore oil and gas production sector.展开更多
In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage ...In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul.展开更多
针对楼宇综合能源系统(residential integrated energy system,RIES)能量管理时未充分考虑影响室温因素及其对负荷建模的影响和刚性捆绑RIES、用户从未全面考虑用户舒适度和用能支出的问题,文中提出冷、热负荷参与阶梯型补贴和电负荷参...针对楼宇综合能源系统(residential integrated energy system,RIES)能量管理时未充分考虑影响室温因素及其对负荷建模的影响和刚性捆绑RIES、用户从未全面考虑用户舒适度和用能支出的问题,文中提出冷、热负荷参与阶梯型补贴和电负荷参与电价型综合需求响应的RIES能量管理优化模型及其求解方法。首先,综合考虑影响室温因素,得到离散化的楼宇热平衡方程,建立楼宇的柔性而非固定的冷、热、电负荷数学模型。其次,建立冷、热负荷参与的阶梯型补贴和电负荷参与的电价型综合需求响应机制。然后,考虑RIES向用户售能的收益、从外部购能的成本和支付用户的补贴费用,构建以最大化RIES运行利润为目标、计及设备和系统运行约束的能量管理优化数学模型,并采用Cplex对线性化后的模型进行求解。最后,通过算例仿真表明:计及综合需求响应的RIES能量管理优化能统筹协调供需两侧资源,提升系统与用户的经济效益。展开更多
基金supported by the Project of Basic Science Center for the National Natural Science Foundation of China(72088101)。
文摘Unconventional oil and gas resources have become the most important and realistic field for increasing China’s domestic oil and gas reserves and production.At present,the production scale does not match the massive amount of resources and the rapid growth of proven geological reserves.The challenges of technology,cost,management,and methodology restrict large-scale and economic development.Based on successful practices,a"one engine with six gears"system engineering methodology is put forward,which includes life-cycle management,overall synergy,interdisciplinary cross-service integration,marketoriented operation,socialized support,digitalized management,and low-carbon and green development.The methodology has been proved to be effective in multiple unconventional oil and gas national demonstration areas,including the Jimusar continental shale oil demonstration area.Disruptive views are introduced-namely,that unconventional oil and gas do not necessarily yield a low return,nor do they necessarily have a low recovery factor.A determination to achieve economic benefit must be a pervasive underlying goal for managers and experts.Return and recovery factors,as primary focuses,must be adhered to during China’s development of unconventional oil and gas.The required methodology transformation includes a revolution in management systems to significantly decrease cost and increase production,resulting in technological innovation.
基金supported by China National Petroleum Corporation Application Fundamental Research Foundation (Grant No. 07A40401)
文摘Many years experience of the operation of high stress (>72% specified minimum yield strength, SMYS) gas pipelines and statistical analysis results of pipeline incidents showed that the operating pipelines at stress levels over 72% SMYS have not presented problems in USA and Canada, and design factor does not control incidents or the safety of pipelines. Enhancing pipeline safety management level is most important for decreasing incident rate. The application history of higher design factors in the U.S and Canada was reviewed. And the effect of higher factors to the critical flaw size, puncture resistance, change of reliability with time, risk level and the arrest toughness requirements of pipeline were analyzed here. The comparison of pipeline failure rates and risk levels between two design factors (0.72 and 0.8) has shown that a change in design factor from 0.72 to 0.8 would bring little effect on failure rates and risk levels. On the basis of the analysis result, the application feasibility of design factor of 0.8 in China was discussed and the related suggestions were proposed. When an operator wishes to apply design factor 0.8 to gas pipeline, the following process is recommended: stress level of line pipe hydro test should be up to 100% SMYS, reliability and risk assessment at the design feasibility or conceptual stage should be conducted, Charpy impact energy should meet the need of pipeline crack arrest; and establish and execute risk based integrity management plan. The technology of pipeline steel metallurgy, line pipe fabrication and pipeline construction, and line pipe quality control level in China achieved tremendous progresses, and line pipe product standards and property indexes have come up to international advanced level. Furthermore, pipeline safety management has improved greatly in China. Consequently, the research for the feasibility of application of design factor of 0.8 in China has fundamental basis.
文摘Plant maintenance has been a discipline that has gradually evolved with the industrial revolution. For quite some time, it has been a "necessary evil" in production, manufacturing, and process settings. The changing business needs and industrial conditions have had various impacts on the maintenance process, particularly over the last few years. While some industries have inherent difficulties seeing what maintenance is all about, others have begun to add more flavor to the organizational maintenance practices. This article brings an overview of developments within the offshore oil and gas production sector.
基金supported by National Natural Science Foundation of China (No. 62201593, 62471480, and 62171466)。
文摘In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul.
文摘针对楼宇综合能源系统(residential integrated energy system,RIES)能量管理时未充分考虑影响室温因素及其对负荷建模的影响和刚性捆绑RIES、用户从未全面考虑用户舒适度和用能支出的问题,文中提出冷、热负荷参与阶梯型补贴和电负荷参与电价型综合需求响应的RIES能量管理优化模型及其求解方法。首先,综合考虑影响室温因素,得到离散化的楼宇热平衡方程,建立楼宇的柔性而非固定的冷、热、电负荷数学模型。其次,建立冷、热负荷参与的阶梯型补贴和电负荷参与的电价型综合需求响应机制。然后,考虑RIES向用户售能的收益、从外部购能的成本和支付用户的补贴费用,构建以最大化RIES运行利润为目标、计及设备和系统运行约束的能量管理优化数学模型,并采用Cplex对线性化后的模型进行求解。最后,通过算例仿真表明:计及综合需求响应的RIES能量管理优化能统筹协调供需两侧资源,提升系统与用户的经济效益。