期刊文献+
共找到18,866篇文章
< 1 2 250 >
每页显示 20 50 100
Water and nitrogen footprint assessment of integrated agronomic practice management in a summer maize cropping system
1
作者 Ningning Yu Bingshuo Wang +3 位作者 Baizhao Ren Bin Zhao Peng Liu Jiwang Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3610-3621,共12页
The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two ... The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize. 展开更多
关键词 integrated agronomic practice management water footprints nitrogen footprints water use efficiency nitrogen use efficiency yield
下载PDF
Green High-yield and High-efficiency Cultivation Techniques of Integrated Management of Water and Fertilizer for Maize under Mulch Drip Irrigation
2
作者 Guangbin YANG 《Plant Diseases and Pests》 CAS 2023年第3期22-26,共5页
The green high-yield and high-efficiency cultivation techniques of integrated management of water and fertilizer for maize under mulch drip irrigation are described from the aspects of high yield target of maize and i... The green high-yield and high-efficiency cultivation techniques of integrated management of water and fertilizer for maize under mulch drip irrigation are described from the aspects of high yield target of maize and its component factor indexes,pre-sowing preparation,sowing,post-sowing management,field management at the seedling stage,integrated management of water and fertilizer for target yield of maize,rational application of micro-fertilizer,comprehensive prevention and control of diseases and pests,timely harvest,etc.,in order to provide a reference for agricultural technicians,maize farmers and maize industry development in northern Xinjiang. 展开更多
关键词 Mulch drip irrigation MAIZE integrated management of water and fertilizer Cultivation techniques
下载PDF
Spatiotemporal variations of ecosystem services and driving factors in the Tianchi Bogda Peak Natural Reserve of Xinjiang,China
3
作者 ZHU Haiqiang WANG Jinlong +2 位作者 TANG Junhu DING Zhaolong GONG Lu 《Journal of Arid Land》 SCIE CSCD 2024年第6期816-833,共18页
Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,i... Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China. 展开更多
关键词 net primary productivity(NPP) water yield soil conservation habitat quality integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model geographic detector Tianchi Bogda Peak Natural Reserve
下载PDF
Spatiotemporal evolution of water conservation function and its driving factors in the Huangshui River Basin, China
4
作者 YUAN Ximin SU Zhiwei +1 位作者 TIAN Fuchang WANG Pengquan 《Journal of Arid Land》 SCIE CSCD 2024年第11期1484-1504,共21页
The Grain for Green project has had a substantial influence on water conservation in the Huangshui River Basin,China through afforestation and grassland restoration over the past two decades.However,a comprehensive un... The Grain for Green project has had a substantial influence on water conservation in the Huangshui River Basin,China through afforestation and grassland restoration over the past two decades.However,a comprehensive understanding of the spatiotemporal evolution of water conservation function and its driving factors remains incomplete in this basin.In this study,we utilized the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to examine the spatiotemporal evolution of water conservation function in the Huangshui River Basin from 2000 to 2020.Additionally,we employed the random forest model,Pearson correlation analysis,and geographical detector(Geodetector)techniques to investigate the primary factors and factor interactions affecting the spatial differentiation of water conservation function.The findings revealed several key points.First,the high-latitude northern region of the study area experienced a significant increase in water conservation over the 21-a period.Second,the Grain for Green project has played a substantial role in improving water conservation function.Third,precipitation,plant available water content(PAWC),grassland,gross domestic product(GDP),and forest land were primary factors influencing the water conservation function.Finally,the spatial differentiation of water conservation function was determined by the interactions among geographical conditions,climatic factors,vegetation biophysical factors,and socio-economic factors.The findings have significant implications for advancing ecological protection and restoration initiatives,enhancing regional water supply capabilities,and safeguarding ecosystem health and stability in the Huangshui River Basin. 展开更多
关键词 water conservation function Grain for Green project climate change integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model random forest geographical detector(Geodetector) Huangshui River Basin
下载PDF
Coupling Aquaculture—Crop Productions and Using of Water Drained from Ponds Rearing Clarias gariepinus as Fertilizer for Okra Production (Abelmoschus esculentus var. Clemson spineless, L. Moench)
5
作者 Louis Dossou Magblénou Justin Kantoussan +2 位作者 César Bassène Dieynaba Yacine Mar Gueye Hamath Sy 《Open Journal of Applied Sciences》 2024年第9期2628-2647,共20页
The present study concerns the revalorization of drained water from aquaculture ponds rearing Clarias gariepinus on okra crops. The rearing was carried out at the farm of Gaston Berger University in 100 m2 ponds. In e... The present study concerns the revalorization of drained water from aquaculture ponds rearing Clarias gariepinus on okra crops. The rearing was carried out at the farm of Gaston Berger University in 100 m2 ponds. In each pond, the individuals of C. garipinus with an average weight of 6 ± 0.3 g were stocked at a density of 11 per m2. The water temperature and pH were measured during the experiment. The control fishing is carried out every month to monitor variations in the weight and size of reared individuals. The plant production is carried out in elementary plots measuring 3 m × 1.5 m. Each plot was fertilized with either: drained water from C. gariepinus rearing (DWC), poultry droppings (PD), cow dung (CD) and mineral fertilizer (NPK). Treatments are carried out in tripliqua with either river water (RW), RW + the recommended dose of NPK (RD-NPK), RW + RD-PD, RW + RD-CD, DWC, DWC + 25% RD-NPK, DWC + 50% RD-NPK, DWC + 75% RD-NPK, DWC + 25% RD-PD, DWC + 50% RD-PD, DWC + 75% RD-PD, DWC + 25% RD-CD, DWC + 50% RD-CD, DWC + 75% RD-CD. Growth parameters and yield of okra were determined. The average temperature in the rearing environment was 27.6 ± 1.5˚C and pH 7.9 ± 1.1. After six (06) months of rearing, C. gariepinus individuals reached an average weight of 850.12 ± 1.3 g and an average height of 52.44 ± 1.1 cm. The daily weight gain and specific growth rates over this period were 3.9 g per day and 2.8% per day, respectively. The treatment T1 (RW + DR-NPK) gave the highest mean collar diameter and mean plant height with 2.3 ± 0.9 cm and 61.6 ± 32 cm, respectively. In T4 (DWC), the mean height of plants was 38.8 ± 23.5 cm and mean collar diameter 1.4 ± 0.8 cm. The growth performance in T4 was comparable to that of RD-CD (T3), but different from RD-NPK (T1) and RD-PD (T2). The highest average number, average weight, average length and average diameter of fruits were noted in treatments T13 (RW + RD-75%CD) and T7 (DWC + 75% RD-NPK). The best yields were noted in T1 (RW + RD-NPK) = 10.8 ± 5.4 t·ha−1, T5 (DWC + 25% RD-NPK) = 9.2 ± 4.6 t·ha−1 and T4 (DWC) = 8.6 ± 4.3 t·ha−1 which are comparable and higher than those obtained in T2 = 5.7 ± 2.8 t·ha−1 and T3 = 7.5 ± 3.8 t·ha−1. 展开更多
关键词 integrated Aquaculture Drained water FERTILIZATIon C. gariepinus OKRA
下载PDF
Integrated Monitor System of Water and Fertilizer of Greenhouse Intelligent Irrigatio 被引量:2
6
作者 蔡长青 郑萍 张继成 《Agricultural Science & Technology》 CAS 2017年第8期1465-1469,1523,共6页
The integration of water and fertilizer is a comprehensive technology combined irrigation and fertilizer, which has outstanding advantages of saving fertilizer, saving water, saving labor, protecting environment, high... The integration of water and fertilizer is a comprehensive technology combined irrigation and fertilizer, which has outstanding advantages of saving fertilizer, saving water, saving labor, protecting environment, high yield and high efficiency. Currently, most of the water and fertilizer integrated irrigation and fertilization and irrigation operation in the production-based greenhouse is achieved relying on artificial experience, which is hard to achieve timely, scientific and intelligent irrigation. In this study, the application of STM32 embedded system realized the real-time collection of the data from the humidity sensors buried in top, middle and low depth of soil, and water and fertilizer integrated irrigation work was completed in the greenhouse through automatic control according to the predetermined fertilization and irrigation strategies for different crops. Moreover, the system had remote monitoring function, which used the global system for mobile (GSM) module to provide users with remote short message services, and therefore, the users could not only achieve the remote intelligent monitoring on the irrigation, light, ventilation of the greenhouse through short messages, but also could start and stop the remote control system operation, so as to realize the automatic management of the greenhouse environment, achieving the purpose of remote fertilization and water-saving irrigation. 展开更多
关键词 Intelligent greenhouse Integration of water and fertilizer SIM32 He-mote monitoring GSM
下载PDF
Fiber optic sensing and performance evaluation of a water conveyance tunnel with composite linings under super-high internal pressures 被引量:2
7
作者 Deyang Wang Honghu Zhu +3 位作者 Jingwu Huang Zhenrui Yan Xing Zheng Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期1997-2012,共16页
For long-distance water conveyance shield tunnels in operation,the high internal water pressure may cause excessive deformation of composite linings,affecting their structural integrity and serviceability.However,the ... For long-distance water conveyance shield tunnels in operation,the high internal water pressure may cause excessive deformation of composite linings,affecting their structural integrity and serviceability.However,the deformation and failure characteristics of lining structures under internal water pressure are not well investigated in the literature,particularly for three-layer composite linings.This study presents an in situ experimental investigation on the response of two types of composite linings(i.e.separated and combined lining structures)subjected to internal pressures,in which a fiber optic nerve system(FONS)equipped with distributed strain and displacement sensing nerves was employed to monitor the performance of the two composite linings during testing.The experimental results clearly show that the damage of the tunnel lining under different internal pressures was mainly located in the self-compaction concrete layer.The separated lining structure responded more aggressively to the variations in internal pressures than the combined one.Moreover,two evaluation indices,i.e.radial displacement and effective stiffness coefficient,are proposed for describing the changes in the structural bearing performance.The effective stiffness coefficients of the two types of lining structures were reduced by 39.4%and 29.5%,respectively.Considering the convenience of field monitoring,it is suggested that the average strains at different layers can be used as characteristic parameters for estimating the health conditions of lining structures in service.The analysis results provide a practical reference for the design and health evaluation of water conveyance shield tunnels with composite linings. 展开更多
关键词 water conveyance tunnel Composite lining interface Strain measurement Geotechnical monitoring Fiber optic nerve system(FonS)
下载PDF
Development and Application of the GIS-Based Water Mass Analysis Integrated System
8
作者 张月霞 苗振清 严世强 《Marine Science Bulletin》 CAS 2008年第2期26-35,共10页
The research on water masses is always one important facet of Oceanography. I adopt the method of Fuzzy Density Clustering to analyse water masses. Meanwhile, I use Visual Basic 6.0 as developing platform and utilize ... The research on water masses is always one important facet of Oceanography. I adopt the method of Fuzzy Density Clustering to analyse water masses. Meanwhile, I use Visual Basic 6.0 as developing platform and utilize the MapX components to develop the platform of GIS. By integrating the Water Masses Model compiled by FORTRAN language, and GIS using Tight Coupling, I develop an Integrated System. That makes all phases are finished in one condition, including the gain of computing grid, the pick-up and analysis of data, the choice of parameters and resetting, the computing of model, and the result's visualization. It improves the efficiency of the data analysis and decision-making Finally, this system is applied in the Zhoushan fishing ground and adjacent region. The results are satisfying. 展开更多
关键词 water mass GIS Model integration the Zhoushan fishing ground
下载PDF
Ensuring water security by utilizing roof-harvested rainwater and lake water treated with a low-cost integrated adsorption-filtration system 被引量:2
9
作者 Riffat Shaheed Wan Hanna Melini Wan Mohtar Ahmed El-Shafie 《Water Science and Engineering》 EI CAS CSCD 2017年第2期115-124,共10页
Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined acti... Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined activated carbon and sand filtration(CACSF) system for roofharvested rainwater and lake water for potable use. Activated carbon was self-prepared using locally sourced coconut shell and was activated using commonly available salt rather than a high-tech procedure that requires a chemical reagent. The filtration chamber was comprised of local,readily available sand. The experiments were conducted with varying antecedent dry intervals(ADIs) of up to 15 d and lake water with varying initial chemical oxygen demand(COD) concentration. The CACSF system managed to produce effluents complying with the drinking water standards for the parameters p H, dissolved oxygen(DO), biochemical oxygen demand(BOD5), COD, total suspended solids(TSS), and ammonia nitrogen(NH_3-N). The CACSF system successfully decreased the population of Escherichia coli(E. coli) in the influents to less than 30 CFU/m L. Samples with a higher population of E. coli(that is, greater than 30 CFU/m L) did not show 100% removal. The system also showed high potential as an alternative for treated drinking water for roof-harvested rainwater and class II lake water. 展开更多
关键词 LOW-COST activated carbon integrated adsorption-sand filtration Roof-harvested RAINwater Lake water water security
下载PDF
Nitrogen and Phosphorus Loss Law and Emission Reduction Effects Under Water and Fertilizer Management Integrated Mode in Dike Paddy Field 被引量:2
10
作者 GUO Longsheng ZHOU Guangtao GUO Zhongyuan 《Journal of Northeast Agricultural University(English Edition)》 CAS 2009年第4期31-37,共7页
To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. D... To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. During investigation, it had given prominence for the water and fertilizer coupling effects of precise irrigation and site specific nutrient management, the characteristics of integration on controlled irrigation, controlled drainage and wetland ecosystem non-point source pollution control. Then the water and fertilizer integrated management mode of paddy field was put forward in Taihu basin where the water production efficiency increased to 1.64 kg. m-3, water saved 37.8%, fertilizer use efficiency raised 15,4%, yield raised 10%, and N, P load decreased 26%-72%. The modern agricultural and farmland ecosystems that control and cut down the farm non-point source pollution came into being, which can be a reference by Taihu basin to control its agricultural non-point source pollution and eutrophicated water body. 展开更多
关键词 paddy field the integrated mode of water and fertilizer management non-point source pollution nitrogen and phosphorus loss
下载PDF
Effects of Different Water-soluble Fertilizers on Yield and Quality of Strawberry under Integrated Application of Water and Fertilizer 被引量:1
11
作者 Rong KANG Jianbiao NIU +1 位作者 Zhengren CHEN Jizu ZHANG 《Asian Agricultural Research》 2018年第12期59-61,66,共4页
Taking Hongyan strawberry as the material and PE drip irrigation tape and fertilizer applicator as the tool of integrated application of water and fertilizer,this experiment studied the effects of six fertilizers incl... Taking Hongyan strawberry as the material and PE drip irrigation tape and fertilizer applicator as the tool of integrated application of water and fertilizer,this experiment studied the effects of six fertilizers including Batian,Jiashili,Wangdefeng,Stanley,volfertile and calcium protein on yield and quality of strawberry. The experimental results showed that different water-soluble fertilizers had different effects on the main economic traits of strawberry. For the maximum single fruit mass,the highest was volfertile treatment( 28. 72 g),followed by calcium protein treatment,and the lowest was Stanley treatment( 23. 89 g). The fruit treated with Batian,volfertile and calcium protein was hard in the texture,the fruit treated with Wangdefeng was harder,that of Stanley was softer,and that of Jiashili was soft. The strawberry fruit treated with Wangdefeng and calcium protein was sweet,the fruit treated with volfertile and Batian was sweet,that treated with Jiashili was sour and sweet,and that treated with Stanley was slightly sour. The fruit treated with calcium protein,volfertile and Batian showed strong storage resistance.Strawberry plants treated with Batian,Wangdefeng,Stanley,and calcium protein showed stronger growth,and strawberry plants showed a semi-opening pattern. The yield of strawberry treated with volfertile was highest( 17 400 kg/ha),which was significantly increased compared with other treatments,followed by that treated by Stanley( 13 140 kg/ha). 展开更多
关键词 water soluble FERTILIZER integrated APPLICATIon of water and FERTILIZER Strawberry Yield Economic traits
下载PDF
Online dynamic measurement of saturation-capillary pressure relation in sandy medium under water level fluctuation 被引量:1
12
作者 李雁 周劲风 +1 位作者 徐军 KAMON M 《Journal of Central South University》 SCIE EI CAS 2010年第1期85-92,共8页
An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-p... An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-phase sandy medium under water level fluctuation. Three-electrode electrical conductivity probe (ECP) was used to measure water saturation. Hydrophobic tensiometer was obtained by spraying waterproof material to the ceramic cup of commercially available hydrophilic tensiometer. A couple of hydrophilic tensiometer and hydrophobic tensiometer were used to measure pore water pressure and pore LNAPL pressure of the sandy medium, respectively. All the signals from ECP and tensiometer were collected by a data taker connected with a computer. The results show that this method can finish the measurement of S-R relation of a complete drainage or imbibition process in less than 60 min. It is much more timesaving compared with 10-40 d of traditional methods. Two cycles of water level fluctuation were produced, and four saturation-capillary pressure relations including two stable residual LNAPL saturations of the sandy medium were obtained during in 350 h. The results show that this method has a good durable performance and feasibility in the porous medium with complicated multiphase flow. Although further studies are needed on the signal stability and accuracy drift of the ECP, this online dynamic method can be used successfully in the rapid characterization of a LNAPL migration in porous media. 展开更多
关键词 water level fluctuation saturation-capillary pressure (S-p) relation online dynamic measurement
下载PDF
A GIS Integrated Water Quality Model System Based on SWMM,ECOM,and RCA
13
作者 CHAI Jie LIANG Jian-guo 《长江科学院院报》 CSCD 北大核心 2019年第1期34-40,共7页
Water Quality Model System( WQMS) is an important approach to analyzing aquatic situation and supporting environmental decision. However,the usage and promotion of WQMS is largely limited by amounts of parameters,comp... Water Quality Model System( WQMS) is an important approach to analyzing aquatic situation and supporting environmental decision. However,the usage and promotion of WQMS is largely limited by amounts of parameters,complex conditions and enormous operations. A GIS integrated system of urban water environment coupled with SWMM( storm runoff model),ECOM( hydrodynamic model) and RCA( water quality model) was constructed in this study,with the production and transformation of contaminants in large scale taken into consideration. This integrated system guaranteed an independent calculation and multi-model coupling calculation,including convenient pre-processing,fast and efficient model running and results visualization in different spatial and temporal scales,in the purpose of simplifying the usage and promotion of complex models and providing necessary understanding required in water resource managing and water pollution controlling,and ultimately improving decision making capability. The functionality of the proposed system was illustrated by a case of Wuhan city. 展开更多
关键词 GIS INTEGRATIon water QUALITY Model system SWMM ECOM RCA
下载PDF
Laser Measurement and Intensity Evaluation of Intake Swirl in Engine Using a Water Analog 被引量:4
14
作者 孙柏刚 李向荣 杜巍 《Journal of Beijing Institute of Technology》 EI CAS 2000年第4期391-396,共6页
The intake swirl in the cylinder was induced by a swirler which was fixed in one of two intake ports. In order to understand the characteristics of the intake swirl, a transparent water analog was designed which simul... The intake swirl in the cylinder was induced by a swirler which was fixed in one of two intake ports. In order to understand the characteristics of the intake swirl, a transparent water analog was designed which simulated 150 type single cylinder engine. At the same time, the particle image velocimetry was used to measure the flow fields induced by various swirlers in the analog. After measurement, a new method was presented to evaluate the intensity of the intake swirl. Then, when the measured sections, the lifts of valve and the swirlers were different, the calculated results of the flow field were compared. 展开更多
关键词 diesel engine intake swirl water analog particle image velocimetry measurement
下载PDF
Architecture of Integrated Source and Effect Measurement System for Researching Corona Phenomena in UHVDC Transmission Line 被引量:1
15
作者 YUAN Haiwen LU Jiayu +1 位作者 LIU Yuanqing YUAN Haibin 《高电压技术》 EI CAS CSCD 北大核心 2014年第3期937-944,共8页
关键词 高电压技术 高压安全 高压试验 避雷设施
下载PDF
The influences of canopy temperature measuring on the derived crop water stress index
16
作者 WANG Hongxi LI Fei +4 位作者 SHEN Hongtao LI Mengyu YIN Gongchao FANG Qin SHAO Liwei 《中国生态农业学报(中英文)》 CAS CSCD 北大核心 2024年第9期1503-1519,共17页
Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the... Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management. 展开更多
关键词 Canopy temperature Measuring time Measuring height and direction Crop water stress index
下载PDF
Research on Solar Water Heating System and Architectural Integration Design—A Case Study of Anqing Children Welfare Home
17
作者 梅小妹 苏剑鸣 《Journal of Landscape Research》 2010年第12期5-8,共4页
Taking the planning and major architectural design projects of Anqing Children Welfare Home for example,through the research on categories and each component of solar water heating system,the paper discussed strategie... Taking the planning and major architectural design projects of Anqing Children Welfare Home for example,through the research on categories and each component of solar water heating system,the paper discussed strategies and methods to realize solar energy and architectural integration design in the climate condition and location environment of Anhui Province. 展开更多
关键词 SOLAR energy SOLAR water HEATING system system selection ARCHITECTURAL integration
下载PDF
Oxygen and hydrogen isotope characteristics of different water bodies in the Burqin River Basin of the Altay Mountains,China
18
作者 XIE Yida WANG Feiteng LIU Shuangshuang 《Journal of Arid Land》 SCIE CSCD 2024年第10期1365-1379,共15页
Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater... Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater,and reservoir water in the Burqin River Basin of the Altay Mountains,China in 2021,and characterized the oxygen and hydrogen isotope variations in different water bodies via instrumental analytics and modeling.Results showed significant seasonal variations in stable isotope ratios of oxygen and hydrogen(δ18O andδ2H,respectively)and significant differences inδ18O andδ2H among different water bodies.Higherδ18O andδ2H values were mainly found in river water,while groundwater and reservoir water had lower isotope ratios.River water and groundwater showed differentδ18O-δ2H relationships with the local meteoric water line,implying that river water and groundwater are controlled by evaporative enrichment and multi-source recharge processes.The evaporative enrichment experienced by reservoir water was less significant and largely influenced by topography,recharge sources,local moisture cycling,and anthropogenic factors.Higher deuterium excess(d-excess)value of 14.34‰for river water probably represented the isotopic signature of combined contributions from direct precipitation,snow and glacial meltwater,and groundwater recharge.The average annual d-excess values of groundwater(10.60‰)and reservoir water(11.49‰)were similar to the value of global precipitation(10.00‰).The findings contribute to understanding the hydroclimatic information reflected in the month-by-month variations in stable isotopes in different water bodies and provide a reference for the study of hydrological processes and climate change in the Altay Mountains,China. 展开更多
关键词 water bodies stable isotopes deuterium excess(d-excess) Hybrid Single-Particle Lagrangian integrated Trajectory(HYSPLIT)model Burqin River Basin Altay Mountains
下载PDF
Spatio-temporal Changes in Water Conservation Ecosystem Service During 1990–2019 in the Tumen River Basin, Northeast China 被引量:2
19
作者 ZHANG Peng LIU Xiaoping +5 位作者 ZHU Weihong LI Chunjing JIN Ri YAN Hengqi GU Chengyang WANG Jingzhi 《Chinese Geographical Science》 SCIE CSCD 2023年第1期102-115,共14页
The water conservation(WC) function of ecosystems is related to regional ecological security and the sustainable development of water resources, and the assessment of WC and its influencing factors is crucial for ecol... The water conservation(WC) function of ecosystems is related to regional ecological security and the sustainable development of water resources, and the assessment of WC and its influencing factors is crucial for ecological and water resource management.The Tumen River Basin(TRB) is located in the core of the Northeast Asian ecological network and has been experiencing severe ecological crises and water shortages in recent years due to climate change and human activities. However, these crises have not been fully revealed to the extent that corresponding scientific measures are lacking. This study analyzed the spatial and temporal evolution characteristics and drivers of WC in the TRB from 1990 to 2019 based on the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST) model. The results showed that: 1) under the combined effect of nature and socioeconomics, the WC depth of the TRB has slowly increased at a rate of 0.11 mm/yr in the past 30 years, with an average WC depth of 36.14 mm. 2) The main driving factor of the spatial variation in WC is precipitation, there is a significant interaction between precipitation and velocity, the interaction between each factor is higher than the contribution of a single factor, and the interactions between factors all have nonlinear enhancement and two-factor enhancement. 3) Among the seven counties and municipalities in the study area, the southern part of Helong City and the southeastern part of Longjing City are extremely important areas for WC(> 75 mm), and they should be regarded as regional water resources and ecological priority protection areas. It is foreseen that under extreme climate conditions in the future, the WC of the watershed is under great potential threat, and protection measures such as afforestation and forestation should begin immediately. Furthermore, the great interannual fluctuations in WC depth may place more stringent requirements on the choice of time scales in the ecosystem service assessment process. 展开更多
关键词 water conservation integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model Geodetector driving factors Tumen River Basin
下载PDF
Impact of Forestry Interventions on Groundwater Recharge and Sediment Control in the Ganga River Basin 被引量:1
20
作者 Ombir Singh Saswat Kumar Kar Nimmala Mohan Reddy 《Open Journal of Forestry》 2023年第1期13-31,共19页
Water related services of natural infrastructure will help to combat the risk of water crisis, and nature-based solutions involve the management of ecosystems to mimic or optimize the natural processes for the provisi... Water related services of natural infrastructure will help to combat the risk of water crisis, and nature-based solutions involve the management of ecosystems to mimic or optimize the natural processes for the provision and regulation of water. Forested areas provide environmental stability and supply a high proportion of the world’s accessible freshwater for domestic, agricultural, industrial and ecological needs. The present work on “Forestry Interventions for Ganga” to rejuvenate the river is one of the steps toward the Ganga River rejuvenation programme in the country. The consequences of forestry interventions for Ganga will be determined on the basis of water quantity and water quality in the Ganga River. The study conservatively estimated the water savings and sedimentation reduction of the riverscape management in the Ganga basin using the Soil Conservation Service Curve Number (SCS-CN) & GEC, 2015 and Trimble, 1999 & CWC, 2019 methodologies, respectively. Forestry plantations and soil and moisture conservation measures devised in the programme to rejuvenate the Ganga River are expected to increase water recharge and decrease sedimentation load by 231.011 MCM&#183;yr<sup>-1</sup> and 1119.6 cubic m&#183;yr<sup>-1</sup> or 395.20 tons&#183;yr<sup>-1</sup>, respectively, in delineated riverscape area of 83,946 km<sup>2</sup> in Ganga basin due to these interventions. The role of trees and forests in improving hydrologic cycles, soil infiltration and ground water recharge in Ganga basin seems to be the reason for this change. Forest plantations and other bioengineering techniques can help to keep rivers perennial, increase precipitation, prevent soil erosion and mitigate floods, drought & climate change. The bioengineering techniques could be a feasible tool to enhance rivers’ self-purification as well as to make river perennial. The results will give momentum to the National Mission of Clean Ganga (NMCG) and its Namami Gange programme including other important rivers in the country and provide inputs in understanding the linkages among forest structure, function, and streamflow. 展开更多
关键词 Bioengineering Measures Ganga River Basin Sediment Control water Harvesting
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部