As the manufacturing process of silicon-based integrated circuits(ICs)approaches its physical limit,the quantum effect of silicon-based field-effect transistors(FETs)has become increasingly evident.And the burgeoning ...As the manufacturing process of silicon-based integrated circuits(ICs)approaches its physical limit,the quantum effect of silicon-based field-effect transistors(FETs)has become increasingly evident.And the burgeoning carbon-based semiconductor technology has become one of the most disruptive technologies in the post-Moore era.As one-dimensional nanomaterials,carbon nanotubes(CNTs)are far superior to silicon at the same technology nodes of FETs because of their excellent electrical transport and scaling properties,rendering them the most competitive material in the next-generation ICs technology.However,certain challenges impede the industrialization of CNTs,particularly in terms of material preparation,which significantly hinders the development of CNT-based ICs.Focusing on CNT-based ICs technology,this review summarizes its main technical status,development trends,existing challenges,and future development directions.展开更多
Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a c...Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side.A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation,with the overarching goal of optimizing the system for low-carbon operation.To begin with,an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side carbon capture power plant within the context of integrated and adaptable operational paradigms.Drawing from this analysis,a model is devised to represent the adjustable resources on the charge-storage side,predicated on the principles of electro-thermal coupling within the energy system.Subsequently,the dissimilarities in the confidence intervals of renewable energy generation are considered,leading to the proposition of a flexible upper threshold for the confidence interval.Building on this,a low-carbon dispatch model is established for the integrated energy system,factoring in the margin allowed by the adjustable resources.In the final phase,a simulation is performed on a regional electric heating integrated energy system.This simulation seeks to assess the impact of source-load-storage coordination on the system’s low-carbon operation across various scenarios of reduction margin reserves.The findings underscore that the proactive scheduling model incorporating confidence interval considerations for reduction margin reserves effectively mitigates the uncertainties tied to renewable energy generation.Through harmonized orchestration of source,load,and storage elements,it expands the utilization scope for renewable energy,safeguards the economic efficiency of system operations under low-carbon emission conditions,and empirically validates the soundness and efficacy of the proposed approach.展开更多
Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model...Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model considering P2G and carbon capture systems,and a two-stage robust optimization model of the electricity-heat-gascold integrated energy system was developed.First,a CHP model considering the P2G and carbon capture system was established,and the electric-thermal coupling characteristics and P2G capacity constraints of the model were derived,which proved that the model could weaken the electric-thermal coupling characteristics,increase the electric power regulation range,and reduce carbon emissions.Subsequently,a two-stage robust optimal scheduling model of an IES was constructed,in which the objective function in the day-ahead scheduling stage was to minimize the start-up and shutdown costs.The objective function in the real-time scheduling stage was to minimize the equipment operating costs,carbon emission costs,wind curtailment,and solar curtailment costs,considering multiple uncertainties.Finally,after the objective function is linearized with a ψ-piecewise method,the model is solved based on the C&CG algorithm.Simulation results show that the proposed model can effectively absorb renewable energy and reduce the total cost of the system.展开更多
With the rapid development of flexible and portable microelectronics,the extreme demand for miniaturized,mechanically flexible,and integrated microsystems are strongly stimulated.Here,biomass-derived carbons(BDCs)are ...With the rapid development of flexible and portable microelectronics,the extreme demand for miniaturized,mechanically flexible,and integrated microsystems are strongly stimulated.Here,biomass-derived carbons(BDCs)are prepared by KOH activation using Qamgur precursor,exhibiting three-dimensional(3D)hierarchical porous structure.Benefiting from unobstructed 3D hierarchical porous structure,BDCs provide an excellent specific capacitance of 433 F g^(-1)and prominent cyclability without capacitance degradation after 50000 cycles at 50 A g^(-1).Furthermore,BDC-based planar micro-supercapacitors(MSCs)without metal collector,prepared by mask-assisted coating,exhibit outstanding areal-specific capacitance of 84 mF cm^(-2)and areal energy density of 10.6μWh cm^(-2),exceeding most of the previous carbon-based MSCs.Impressively,the MSCs disclose extraordinary flexibility with capacitance retention of almost 100%under extreme bending state.More importantly,a flexible planar integrated system composed of the MSC and temperature sensor is assembled to efficiently monitor the temperature variation,providing a feasible route for flexible MSC-based functional micro-devices.展开更多
With increasing reforms related to integrated energy systems(IESs),each energy subsystem,as a participant based on bounded rationality,significantly influences the optimal scheduling of the entire IES through mutual l...With increasing reforms related to integrated energy systems(IESs),each energy subsystem,as a participant based on bounded rationality,significantly influences the optimal scheduling of the entire IES through mutual learning and imitation.A reasonable multiagent joint operation strategy can help this system meet its low-carbon objectives.This paper proposes a bilayer low-carbon optimal operational strategy for an IES based on the Stackelberg master-slave game and multiagent joint operation.The studied IES includes cogeneration,power-to-gas,and carbon capture systems.Based on the Stackelberg master-slave game theory,sellers are used as leaders in the upper layer to set the prices of electricity and heat,while energy producers,energy storage providers,and load aggregators are used as followers in the lower layer to adjust the operational strategy of the system.An IES bilayer optimization model based on the Stackelberg master-slave game was developed.Finally,the Karush-Kuhn-Tucker(KKT)condition and linear relaxation technology are used to convert the bilayer game model to a single layer.CPLEX,which is a mathematical program solver,is used to solve the equilibrium problem and the carbon emission trading cost of the system when the benefits of each subject reach maximum and to analyze the impact of different carbon emission trading prices and growth rates on the operational strategy of the system.As an experimental demonstration,we simulated an IES coupled with an IEEE 39-node electrical grid system,a six-node heat network system,and a six-node gas network system.The simulation results confirm the effectiveness and feasibility of the proposed model.展开更多
Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbo...Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbon economic scheduling framework that considers the coordinated optimization of ladder-type carbon trading and integrated demand response(IDR)is proposed in this paper for the integrated energy system(IES),where the first stage determines the energy consumption plan of users by leveraging the price-based electrical-heat IDR.In contrast,the second stage minimizes the system total cost to optimize the outputs of generations with consideration of the uncertainty of renewables.In addition,to fully exploit the system’s emission reduction potential,a carbon trading cost model with segmented CO_(2) emission intervals is built by introducing a reward-penalty ladder-type carbon trading mechanism,and the flexible thermal comfort elasticity of customers is taken into account by putting forward a predicted mean vote index on the load side.The CPLEX optimizer resolves the two-stage model,and the study results on a modified IES situated in North China show the proposed model can effectively reduce carbon emissions and guarantee economical efficiency operation of the system.展开更多
As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve t...As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve the coordinated optimal operation and low-carbon economic operation problem in multi-virtual power plant,a multi-virtual power plant(VPP)electricity-carbon interaction optimal scheduling model considering integrated demand response(IDR)is proposed.Firstly,a multi-VPP electricity-carbon interaction framework is established.The interaction of electric energy and carbon quotas can realize energy complementarity,reduce energy waste and promote low-carbon operation.Secondly,in order to coordinate the multiple types of energy and load in VPPC to further achieve low-carbon operation,the IDR mechanism based on the user comprehensive satisfaction(UCS)of electricity,heat as well as hydrogen is designed,which can effectively maintain the UCS in the cluster within a relatively high range.Finally,the unit output scheme is formulated to minimize the total cost of VPPC and the model is solved using theCPLEX solver.The simulation results showthat the proposed method effectively promotes the coordinated operation among multi-VPP,increases the consumption rate of renewable energy sources and the economics of VPPC and reduces carbon emissions.展开更多
In dual-ion batteries (DIBs), energy storage is achieved by intercalation/de-intercalation of both cations and anions. Due to the mismatch between ion diameter and layer space of active materials, however, volume expa...In dual-ion batteries (DIBs), energy storage is achieved by intercalation/de-intercalation of both cations and anions. Due to the mismatch between ion diameter and layer space of active materials, however, volume expansion and exfoliation always occur for electrode materials. Herein, an integrated electrode Co3O4/carbon fiber paper (CFP) is prepared as the anode of DIB. As the Co3O4 nanosheets grow on CFP substrate vertically, it promotes the immersion of electrolyte and shortens the pathway for ionic transport. Besides, the strong interaction between Co3O4 and CFP substrate reduces the possibility of sheet exfoliation. An integrated-electrode-based DIB is therefore packaged using Co3O4/CFP as anode and graphite as cathode. As a result, a high energy density of 72 Wh/kg is achieved at a power density of 150 W/kg. The design of integrated electrode provides a new route for the development of high-performance DIBs.展开更多
Through our newly-developed "chemical vapor deposition integrated process (ISVD-IP)'" using carbon OlOXlae (t..u2) as me raw matenal and only carbon source introduced, CO2 could be catalytically activated and c...Through our newly-developed "chemical vapor deposition integrated process (ISVD-IP)'" using carbon OlOXlae (t..u2) as me raw matenal and only carbon source introduced, CO2 could be catalytically activated and converted to a new solid-form product, i.e., carbon nanotubes (CO2-derived) at a quite high yield (the single-pass carbon yield in the solid-form carbon-product produced from CO2 catalytic capture and conversion was more than 30% at a single-pass carbon-base). For comparison, when only pure carbon dioxide was introduced using the conventional CVD method without integrated process, no solid-form carbon-material product could be formed. In the addition of saturated steam at room temperature in the feed for CVD, there were much more end-opening carbon nano-tubes produced, at a slightly higher carbon yield. These inspiring works opened a remarkable and alternative new approach for carbon dioxide catalytic capture to solid-form product, comparing with that of CO2 sequestration (CCS) or CO2 mineralization (solidification), etc. As a result, there was much less body volume and almost no greenhouse effect for this solid-form carbon-material than those of primitive carbon dioxide.展开更多
Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention,but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with...Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention,but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with high performance.Here,we grow aligned carbon nanotubes(CNTs)array on continuous graphene(G)tube,and their seamlessly connected structure provides the obtained G/CNTs composite fiber with a unique self-supported hollow structure.Taking advantage of the hollow structure,other active materials(e.g.,polyaniline,PANI)could be easily functionalized on both inner and outer surfaces of the tube,and the obtained G/CNTs/PANI composite hollow fibers achieve a high mass loading(90%)of PANI.The G/CNTs/PANI composite hollow fibers can not only be used for high-performance fiber-shaped supercapacitor with large specific capacitance of 472 mF cm^-2,but also can replace platinum wire to build fiber-shaped dye-sensitized solar cell(DSSC)with a high power conversion efficiency of 4.20%.As desired,the integrated device of DSSC and supercapacitor with the G/CNTs/PANI composite hollow fiber used as the common electrode exhibits a total power conversion and storage efficiency as high as 2.1%.Furthermore,the self-supported G/CNTs hollow fiber could be further functionalized with other active materials for building other flexible and wearable electronics.展开更多
A breakthrough in advancing power density and stability of carbon-based supercapacitors is trapped by inefficient pore structures of electrode materials.Herein,an ultramicroporous carbon with ultrahigh integrated capa...A breakthrough in advancing power density and stability of carbon-based supercapacitors is trapped by inefficient pore structures of electrode materials.Herein,an ultramicroporous carbon with ultrahigh integrated capacitance fabricated via one-step carbonization/activation of dense bacterial cellulose(BC)precursor followed by nitrogen/sulfur dual doping is reported.The microporous carbon possesses highly concentrated micropores(~2 nm)and a considerable amount of sub-micropores(<1 nm).The unique porous structure provides high specific surface area(1554 m^2 g^-1)and packing density(1.18 g cm^-3).The synergistic effects from the particular porous structure and optimal doping effectively enhance ion storage and ion/electron transport.As a result,the remarkable specific capacitances,including ultrahigh gravimetric and volumetric capacitances(430 F g^-1 and 507 F cm^-3 at 0.5 A g^-1),and excellent cycling and rate stability even at a high current density of 10 A g^-1(327 F g^-1 and 385 F cm^-3)are realized.Via compositing the porous carbon and BC skeleton,a robust all-solid-state cellulose-based supercapacitor presents super high areal energy density(~0.77 mWh cm^-2),volumetric energy density(~17.8 W L^-1),and excellent cyclic stability.展开更多
Integrated multi-tropic aquaculture(IMTA)systems have been used in China for many years and have achieved significant economic,social,and ecological benefits.However,there is still a lack of benthic bioremediation spe...Integrated multi-tropic aquaculture(IMTA)systems have been used in China for many years and have achieved significant economic,social,and ecological benefits.However,there is still a lack of benthic bioremediation species that can effectively utilize the aquaculture particulate organic waste in the system.Polychaete Perinereis aibuhitensis Grube is used as an environmental remediation species for large-scale aquaculture to reduce particulate organic waste,which is of great significance to environmental protection.To improve bio-elements utilization efficiency,P.aibuhitensis was applied for IMTA indoor fish(Hexagrammos otakii)farming.Results showed that in the system,production of 1 kg of the fish discharged 2141-2338 mg of carbon and 529-532 mg of nitrogen,while in the monoculture of the fish,the figures were 3033-3390 mg and 764-794 mg,or 24.84%-35.26%and 30.35%-33.32%less,respectively.This approach promoted IMTA technology that could utilize the particulate organic waste from intensive aquaculture and reduce the adverse environmental effects.展开更多
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
An on-chip electrochemical detector for microfluidic chips was described, based on integrated carbon nanotube (CNT) electrodes directly onto the chip substrate through microwave plasma chemical vapor deposition (MW...An on-chip electrochemical detector for microfluidic chips was described, based on integrated carbon nanotube (CNT) electrodes directly onto the chip substrate through microwave plasma chemical vapor deposition (MWPCVD). The attractive performance of the integrated CNT electrodes was demonstrated for the amperometric detection of sucrose, glucose and D-fructose. The integrated CNT electrodes showed stronger electrocatalytic activity than gold electrodes.展开更多
Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this...Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas.展开更多
This paper proposes a method to evaluate the reliability of power system with different capacities of wind power while considering carbon tax. The proposed method is a hybrid approach which combines Frequency and Dura...This paper proposes a method to evaluate the reliability of power system with different capacities of wind power while considering carbon tax. The proposed method is a hybrid approach which combines Frequency and Duration (F&D) method and Monte Carlo Simulation (MCS) method. MCS method is used to achieve a model to simulate the random status of power system. Also, the proposed method is applied on the IEEE 14-bus test system to investigate the effects of integrating different capacities of wind energy to the reliability of power system with considering carbon tax.展开更多
Cities play a vital role in social development,which contribute to more than 70%of global carbon emission.Low-carbon city construction and decarbonization of the energy sector are the critical strategies to cope with ...Cities play a vital role in social development,which contribute to more than 70%of global carbon emission.Low-carbon city construction and decarbonization of the energy sector are the critical strategies to cope with the increasingly serious climate change problems,and low-carbon technologies have attracted extensive attention.However,the potential of such technologies to reduce carbon emissions is constrained by various factors,such as space,operational environment,and safety concerns.As an essential territorial natural resource,underground space can provide large-scale and stable space support for existing low-carbon technologies.Integrating underground space and low-carbon technologies could be a promising approach towards carbon neutrality,and hence,warrants further exploration.First,a comprehensive review of the existing low-carbon technologies including the technical bottlenecks is presented.Second,the features of underground space and its low carbon potential are summarized.Moreover,a framework for the underground space based integrated energy system is proposed,including system configuration,operational mechanisms,and the resulting benefits.Finally,the research prospect and key challenges required to be settled are highlighted.展开更多
In this paper,a novel multi-objective optimization model of integrated energy systems(IESs)is proposed based on the ladder-type carbon emission trading mechanism and refined load demand response strategies.First,the c...In this paper,a novel multi-objective optimization model of integrated energy systems(IESs)is proposed based on the ladder-type carbon emission trading mechanism and refined load demand response strategies.First,the carbon emission trading mechanism is introduced into the optimal scheduling of IESs,and a ladder-type carbon emission cost calculation model based on rewards and penalties is established to strictly control the carbon emissions of the system.Then,according to different response characteristics of electric load and heating load,a refined load demand response model is built based on the price elasticity matrix and substitutability of energy supply mode.On these basis,a multi-objective optimization model of IESs is established,which aims to minimize the total operating cost and the renewable energy source(RES)curtailment.Finally,based on typical case studies,the simulation results show that the proposed model can effectively improve the economic benefits of IESs and the utilization efficiency of RESs.展开更多
Large quantities of blast furnace(BF) slag and CO_2 are discharged annually from iron and steel industries, along with a large amount of waste heat.The mineral carbonation of BF slag can not only reduce emissions of s...Large quantities of blast furnace(BF) slag and CO_2 are discharged annually from iron and steel industries, along with a large amount of waste heat.The mineral carbonation of BF slag can not only reduce emissions of solid waste but also realize the in-situ fixation of CO_2 with low energy consumption if integrated with the waste heat utilization.In this study, based on our previous works, Aspen Plus was employed to simulate and optimize the carbonation process and integrate the process energy.The effects of gehlenite extraction, MgSO_4 carbonation,and aluminum ammonium sulfate crystallization were studied systematically.The simulation results demonstrate that 2.57 kg of BF slag can sequester 1 kg of CO_2, requiring 5.34 MJ of energy(3.3 MJ heat and 2.04 MJ electricity), and this energy includes the capture of CO_2 from industrial flue gases.Approximately 60 kg net CO_2 emission reduction could be achieved for the disposal of one ton of BF slag.In addition, the by-product,aluminum ammonium sulfate, is a high value-added product.Preliminary economic analysis indicates that the profit for the whole process is 1127 CNY per ton of BF slag processed.展开更多
Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined acti...Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined activated carbon and sand filtration(CACSF) system for roofharvested rainwater and lake water for potable use. Activated carbon was self-prepared using locally sourced coconut shell and was activated using commonly available salt rather than a high-tech procedure that requires a chemical reagent. The filtration chamber was comprised of local,readily available sand. The experiments were conducted with varying antecedent dry intervals(ADIs) of up to 15 d and lake water with varying initial chemical oxygen demand(COD) concentration. The CACSF system managed to produce effluents complying with the drinking water standards for the parameters p H, dissolved oxygen(DO), biochemical oxygen demand(BOD5), COD, total suspended solids(TSS), and ammonia nitrogen(NH_3-N). The CACSF system successfully decreased the population of Escherichia coli(E. coli) in the influents to less than 30 CFU/m L. Samples with a higher population of E. coli(that is, greater than 30 CFU/m L) did not show 100% removal. The system also showed high potential as an alternative for treated drinking water for roof-harvested rainwater and class II lake water.展开更多
基金supported by National Natural Science Foundation of China(Grant No.52022078)Shaanxi Provincial Key Research and Development Program(Grant No.2021ZDLGY10-02,2019ZDLGY01-09)。
文摘As the manufacturing process of silicon-based integrated circuits(ICs)approaches its physical limit,the quantum effect of silicon-based field-effect transistors(FETs)has become increasingly evident.And the burgeoning carbon-based semiconductor technology has become one of the most disruptive technologies in the post-Moore era.As one-dimensional nanomaterials,carbon nanotubes(CNTs)are far superior to silicon at the same technology nodes of FETs because of their excellent electrical transport and scaling properties,rendering them the most competitive material in the next-generation ICs technology.However,certain challenges impede the industrialization of CNTs,particularly in terms of material preparation,which significantly hinders the development of CNT-based ICs.Focusing on CNT-based ICs technology,this review summarizes its main technical status,development trends,existing challenges,and future development directions.
基金supported by the Science and Technology Project of State Grid Inner Mongolia East Power Co.,Ltd.:Research on Carbon Flow Apportionment and Assessment Methods for Distributed Energy under Dual Carbon Targets(52664K220004).
文摘Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side.A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation,with the overarching goal of optimizing the system for low-carbon operation.To begin with,an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side carbon capture power plant within the context of integrated and adaptable operational paradigms.Drawing from this analysis,a model is devised to represent the adjustable resources on the charge-storage side,predicated on the principles of electro-thermal coupling within the energy system.Subsequently,the dissimilarities in the confidence intervals of renewable energy generation are considered,leading to the proposition of a flexible upper threshold for the confidence interval.Building on this,a low-carbon dispatch model is established for the integrated energy system,factoring in the margin allowed by the adjustable resources.In the final phase,a simulation is performed on a regional electric heating integrated energy system.This simulation seeks to assess the impact of source-load-storage coordination on the system’s low-carbon operation across various scenarios of reduction margin reserves.The findings underscore that the proactive scheduling model incorporating confidence interval considerations for reduction margin reserves effectively mitigates the uncertainties tied to renewable energy generation.Through harmonized orchestration of source,load,and storage elements,it expands the utilization scope for renewable energy,safeguards the economic efficiency of system operations under low-carbon emission conditions,and empirically validates the soundness and efficacy of the proposed approach.
基金supported by the National Natural Science Foundation of China(Grant number 51977154)。
文摘Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model considering P2G and carbon capture systems,and a two-stage robust optimization model of the electricity-heat-gascold integrated energy system was developed.First,a CHP model considering the P2G and carbon capture system was established,and the electric-thermal coupling characteristics and P2G capacity constraints of the model were derived,which proved that the model could weaken the electric-thermal coupling characteristics,increase the electric power regulation range,and reduce carbon emissions.Subsequently,a two-stage robust optimal scheduling model of an IES was constructed,in which the objective function in the day-ahead scheduling stage was to minimize the start-up and shutdown costs.The objective function in the real-time scheduling stage was to minimize the equipment operating costs,carbon emission costs,wind curtailment,and solar curtailment costs,considering multiple uncertainties.Finally,after the objective function is linearized with a ψ-piecewise method,the model is solved based on the C&CG algorithm.Simulation results show that the proposed model can effectively absorb renewable energy and reduce the total cost of the system.
基金support from Liao Ning Revitalization Talents Program(XLYC1907144)Dalian Youth Science and Technology Star Project Support Program(No.2017RQ104)+6 种基金National Key Research and Development Program of China(No.2020YFB0311600)National Natural Science Foundation of China(Grant Nos.22125903,51872283,22075279)Liaoning BaiQianWan Talents Program(Grant XLYC1807153)Dalian Innovation Support Plan for High Level Talents(2019RT09)Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL201912,DNL201915,DNL202016,DNL202019)DICP(DICP ZZBS201802,DICP I2020032)The Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021002,2021009).
文摘With the rapid development of flexible and portable microelectronics,the extreme demand for miniaturized,mechanically flexible,and integrated microsystems are strongly stimulated.Here,biomass-derived carbons(BDCs)are prepared by KOH activation using Qamgur precursor,exhibiting three-dimensional(3D)hierarchical porous structure.Benefiting from unobstructed 3D hierarchical porous structure,BDCs provide an excellent specific capacitance of 433 F g^(-1)and prominent cyclability without capacitance degradation after 50000 cycles at 50 A g^(-1).Furthermore,BDC-based planar micro-supercapacitors(MSCs)without metal collector,prepared by mask-assisted coating,exhibit outstanding areal-specific capacitance of 84 mF cm^(-2)and areal energy density of 10.6μWh cm^(-2),exceeding most of the previous carbon-based MSCs.Impressively,the MSCs disclose extraordinary flexibility with capacitance retention of almost 100%under extreme bending state.More importantly,a flexible planar integrated system composed of the MSC and temperature sensor is assembled to efficiently monitor the temperature variation,providing a feasible route for flexible MSC-based functional micro-devices.
基金supported by the National Natural Science Foundation of China(Grant No.62063016)。
文摘With increasing reforms related to integrated energy systems(IESs),each energy subsystem,as a participant based on bounded rationality,significantly influences the optimal scheduling of the entire IES through mutual learning and imitation.A reasonable multiagent joint operation strategy can help this system meet its low-carbon objectives.This paper proposes a bilayer low-carbon optimal operational strategy for an IES based on the Stackelberg master-slave game and multiagent joint operation.The studied IES includes cogeneration,power-to-gas,and carbon capture systems.Based on the Stackelberg master-slave game theory,sellers are used as leaders in the upper layer to set the prices of electricity and heat,while energy producers,energy storage providers,and load aggregators are used as followers in the lower layer to adjust the operational strategy of the system.An IES bilayer optimization model based on the Stackelberg master-slave game was developed.Finally,the Karush-Kuhn-Tucker(KKT)condition and linear relaxation technology are used to convert the bilayer game model to a single layer.CPLEX,which is a mathematical program solver,is used to solve the equilibrium problem and the carbon emission trading cost of the system when the benefits of each subject reach maximum and to analyze the impact of different carbon emission trading prices and growth rates on the operational strategy of the system.As an experimental demonstration,we simulated an IES coupled with an IEEE 39-node electrical grid system,a six-node heat network system,and a six-node gas network system.The simulation results confirm the effectiveness and feasibility of the proposed model.
基金supported by the State Grid Shandong Electric Power Company Economic and Technical Research Institute Project(SGSDJY00GPJS2100135).
文摘Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbon economic scheduling framework that considers the coordinated optimization of ladder-type carbon trading and integrated demand response(IDR)is proposed in this paper for the integrated energy system(IES),where the first stage determines the energy consumption plan of users by leveraging the price-based electrical-heat IDR.In contrast,the second stage minimizes the system total cost to optimize the outputs of generations with consideration of the uncertainty of renewables.In addition,to fully exploit the system’s emission reduction potential,a carbon trading cost model with segmented CO_(2) emission intervals is built by introducing a reward-penalty ladder-type carbon trading mechanism,and the flexible thermal comfort elasticity of customers is taken into account by putting forward a predicted mean vote index on the load side.The CPLEX optimizer resolves the two-stage model,and the study results on a modified IES situated in North China show the proposed model can effectively reduce carbon emissions and guarantee economical efficiency operation of the system.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No.52107107).
文摘As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve the coordinated optimal operation and low-carbon economic operation problem in multi-virtual power plant,a multi-virtual power plant(VPP)electricity-carbon interaction optimal scheduling model considering integrated demand response(IDR)is proposed.Firstly,a multi-VPP electricity-carbon interaction framework is established.The interaction of electric energy and carbon quotas can realize energy complementarity,reduce energy waste and promote low-carbon operation.Secondly,in order to coordinate the multiple types of energy and load in VPPC to further achieve low-carbon operation,the IDR mechanism based on the user comprehensive satisfaction(UCS)of electricity,heat as well as hydrogen is designed,which can effectively maintain the UCS in the cluster within a relatively high range.Finally,the unit output scheme is formulated to minimize the total cost of VPPC and the model is solved using theCPLEX solver.The simulation results showthat the proposed method effectively promotes the coordinated operation among multi-VPP,increases the consumption rate of renewable energy sources and the economics of VPPC and reduces carbon emissions.
基金Supports from the National Natural Science Foundation of China (51872115 and 51802110)the National Key R&D Program of China (2016YFA0200400)+2 种基金the Jilin Province/Jilin University Co-construction Project-Funds for New Materials (SXGJSF20173, Branch-2/440050316A36)the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT, 2017TD-09)“Double-First Class” Discipline for Materials Science & Engineering, are greatly acknowledged
文摘In dual-ion batteries (DIBs), energy storage is achieved by intercalation/de-intercalation of both cations and anions. Due to the mismatch between ion diameter and layer space of active materials, however, volume expansion and exfoliation always occur for electrode materials. Herein, an integrated electrode Co3O4/carbon fiber paper (CFP) is prepared as the anode of DIB. As the Co3O4 nanosheets grow on CFP substrate vertically, it promotes the immersion of electrolyte and shortens the pathway for ionic transport. Besides, the strong interaction between Co3O4 and CFP substrate reduces the possibility of sheet exfoliation. An integrated-electrode-based DIB is therefore packaged using Co3O4/CFP as anode and graphite as cathode. As a result, a high energy density of 72 Wh/kg is achieved at a power density of 150 W/kg. The design of integrated electrode provides a new route for the development of high-performance DIBs.
基金the National 973 Program of Ministry of Sciences and Technologies of China(2011CB201202)the National Natural Science Foundation of China(20776089)
文摘Through our newly-developed "chemical vapor deposition integrated process (ISVD-IP)'" using carbon OlOXlae (t..u2) as me raw matenal and only carbon source introduced, CO2 could be catalytically activated and converted to a new solid-form product, i.e., carbon nanotubes (CO2-derived) at a quite high yield (the single-pass carbon yield in the solid-form carbon-product produced from CO2 catalytic capture and conversion was more than 30% at a single-pass carbon-base). For comparison, when only pure carbon dioxide was introduced using the conventional CVD method without integrated process, no solid-form carbon-material product could be formed. In the addition of saturated steam at room temperature in the feed for CVD, there were much more end-opening carbon nano-tubes produced, at a slightly higher carbon yield. These inspiring works opened a remarkable and alternative new approach for carbon dioxide catalytic capture to solid-form product, comparing with that of CO2 sequestration (CCS) or CO2 mineralization (solidification), etc. As a result, there was much less body volume and almost no greenhouse effect for this solid-form carbon-material than those of primitive carbon dioxide.
基金the National Natural Science Foundation of China(Nos.21774094,51702237,and 51973159)Science and Technology Commission of Shanghai Municipality(14DZ2261100)+1 种基金Shanghai Rising–Star Program(17QA1404300)the Youth Talent Support Program at Shanghai,the Fundamental Research Funds for the Central Universities(Tongji University).
文摘Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention,but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with high performance.Here,we grow aligned carbon nanotubes(CNTs)array on continuous graphene(G)tube,and their seamlessly connected structure provides the obtained G/CNTs composite fiber with a unique self-supported hollow structure.Taking advantage of the hollow structure,other active materials(e.g.,polyaniline,PANI)could be easily functionalized on both inner and outer surfaces of the tube,and the obtained G/CNTs/PANI composite hollow fibers achieve a high mass loading(90%)of PANI.The G/CNTs/PANI composite hollow fibers can not only be used for high-performance fiber-shaped supercapacitor with large specific capacitance of 472 mF cm^-2,but also can replace platinum wire to build fiber-shaped dye-sensitized solar cell(DSSC)with a high power conversion efficiency of 4.20%.As desired,the integrated device of DSSC and supercapacitor with the G/CNTs/PANI composite hollow fiber used as the common electrode exhibits a total power conversion and storage efficiency as high as 2.1%.Furthermore,the self-supported G/CNTs hollow fiber could be further functionalized with other active materials for building other flexible and wearable electronics.
文摘A breakthrough in advancing power density and stability of carbon-based supercapacitors is trapped by inefficient pore structures of electrode materials.Herein,an ultramicroporous carbon with ultrahigh integrated capacitance fabricated via one-step carbonization/activation of dense bacterial cellulose(BC)precursor followed by nitrogen/sulfur dual doping is reported.The microporous carbon possesses highly concentrated micropores(~2 nm)and a considerable amount of sub-micropores(<1 nm).The unique porous structure provides high specific surface area(1554 m^2 g^-1)and packing density(1.18 g cm^-3).The synergistic effects from the particular porous structure and optimal doping effectively enhance ion storage and ion/electron transport.As a result,the remarkable specific capacitances,including ultrahigh gravimetric and volumetric capacitances(430 F g^-1 and 507 F cm^-3 at 0.5 A g^-1),and excellent cycling and rate stability even at a high current density of 10 A g^-1(327 F g^-1 and 385 F cm^-3)are realized.Via compositing the porous carbon and BC skeleton,a robust all-solid-state cellulose-based supercapacitor presents super high areal energy density(~0.77 mWh cm^-2),volumetric energy density(~17.8 W L^-1),and excellent cyclic stability.
基金Supported by the National Natural Science Foundation of China(No.41876185)the Major Agricultural Applied Technological Innovation program in Shandong Province(No.SD2019YY007)the Central Public-interest Scientifi c Institution Basal Research Fund,Chinese Academy of Fishery Sciences(No.2018GH15)。
文摘Integrated multi-tropic aquaculture(IMTA)systems have been used in China for many years and have achieved significant economic,social,and ecological benefits.However,there is still a lack of benthic bioremediation species that can effectively utilize the aquaculture particulate organic waste in the system.Polychaete Perinereis aibuhitensis Grube is used as an environmental remediation species for large-scale aquaculture to reduce particulate organic waste,which is of great significance to environmental protection.To improve bio-elements utilization efficiency,P.aibuhitensis was applied for IMTA indoor fish(Hexagrammos otakii)farming.Results showed that in the system,production of 1 kg of the fish discharged 2141-2338 mg of carbon and 529-532 mg of nitrogen,while in the monoculture of the fish,the figures were 3033-3390 mg and 764-794 mg,or 24.84%-35.26%and 30.35%-33.32%less,respectively.This approach promoted IMTA technology that could utilize the particulate organic waste from intensive aquaculture and reduce the adverse environmental effects.
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
基金Supported by National Natural Science Foundation of China (Nos.50572075, 51072140)the Young and Middle-Aged Elitists' Scientific and Technological Innovation Team Project of the Institutions of Higher Education in Hubei Province of China the Scientific Research Projects of Hubei Education Department of China (Z200715001)
文摘An on-chip electrochemical detector for microfluidic chips was described, based on integrated carbon nanotube (CNT) electrodes directly onto the chip substrate through microwave plasma chemical vapor deposition (MWPCVD). The attractive performance of the integrated CNT electrodes was demonstrated for the amperometric detection of sucrose, glucose and D-fructose. The integrated CNT electrodes showed stronger electrocatalytic activity than gold electrodes.
基金supported by the Innovation Projects for Overseas Returnees of Ningxia Hui Autonomous Region-Study on Multi-Scenario Land Use Optimization and Carbon Storage in the Ningxia Section of Yellow River Basin(202303)the National Natural Science Foundation of China(42067022,41761066)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2022AAC03024)。
文摘Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas.
文摘This paper proposes a method to evaluate the reliability of power system with different capacities of wind power while considering carbon tax. The proposed method is a hybrid approach which combines Frequency and Duration (F&D) method and Monte Carlo Simulation (MCS) method. MCS method is used to achieve a model to simulate the random status of power system. Also, the proposed method is applied on the IEEE 14-bus test system to investigate the effects of integrating different capacities of wind energy to the reliability of power system with considering carbon tax.
基金supported by the consulting research project of Chinese Academy of Engineering(Grant No.2022-XY-76)National Natural Science Foundation of China(Grant No.52177112).
文摘Cities play a vital role in social development,which contribute to more than 70%of global carbon emission.Low-carbon city construction and decarbonization of the energy sector are the critical strategies to cope with the increasingly serious climate change problems,and low-carbon technologies have attracted extensive attention.However,the potential of such technologies to reduce carbon emissions is constrained by various factors,such as space,operational environment,and safety concerns.As an essential territorial natural resource,underground space can provide large-scale and stable space support for existing low-carbon technologies.Integrating underground space and low-carbon technologies could be a promising approach towards carbon neutrality,and hence,warrants further exploration.First,a comprehensive review of the existing low-carbon technologies including the technical bottlenecks is presented.Second,the features of underground space and its low carbon potential are summarized.Moreover,a framework for the underground space based integrated energy system is proposed,including system configuration,operational mechanisms,and the resulting benefits.Finally,the research prospect and key challenges required to be settled are highlighted.
基金supported by the Science and Technology Project of State Grid Corporation of China“Key Technologies and Application of Distributed Swarm Intelligent Collaborative Control and Optimization for Energy Internet”(No.52100220002B)。
文摘In this paper,a novel multi-objective optimization model of integrated energy systems(IESs)is proposed based on the ladder-type carbon emission trading mechanism and refined load demand response strategies.First,the carbon emission trading mechanism is introduced into the optimal scheduling of IESs,and a ladder-type carbon emission cost calculation model based on rewards and penalties is established to strictly control the carbon emissions of the system.Then,according to different response characteristics of electric load and heating load,a refined load demand response model is built based on the price elasticity matrix and substitutability of energy supply mode.On these basis,a multi-objective optimization model of IESs is established,which aims to minimize the total operating cost and the renewable energy source(RES)curtailment.Finally,based on typical case studies,the simulation results show that the proposed model can effectively improve the economic benefits of IESs and the utilization efficiency of RESs.
基金Supported by the National Key Projects for Fundamental Research and Development of China(2016YFB0600904)
文摘Large quantities of blast furnace(BF) slag and CO_2 are discharged annually from iron and steel industries, along with a large amount of waste heat.The mineral carbonation of BF slag can not only reduce emissions of solid waste but also realize the in-situ fixation of CO_2 with low energy consumption if integrated with the waste heat utilization.In this study, based on our previous works, Aspen Plus was employed to simulate and optimize the carbonation process and integrate the process energy.The effects of gehlenite extraction, MgSO_4 carbonation,and aluminum ammonium sulfate crystallization were studied systematically.The simulation results demonstrate that 2.57 kg of BF slag can sequester 1 kg of CO_2, requiring 5.34 MJ of energy(3.3 MJ heat and 2.04 MJ electricity), and this energy includes the capture of CO_2 from industrial flue gases.Approximately 60 kg net CO_2 emission reduction could be achieved for the disposal of one ton of BF slag.In addition, the by-product,aluminum ammonium sulfate, is a high value-added product.Preliminary economic analysis indicates that the profit for the whole process is 1127 CNY per ton of BF slag processed.
基金supported by the Universiti Kebangsaan Malaysia Grant(Grant No.GUP-2014-077)
文摘Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined activated carbon and sand filtration(CACSF) system for roofharvested rainwater and lake water for potable use. Activated carbon was self-prepared using locally sourced coconut shell and was activated using commonly available salt rather than a high-tech procedure that requires a chemical reagent. The filtration chamber was comprised of local,readily available sand. The experiments were conducted with varying antecedent dry intervals(ADIs) of up to 15 d and lake water with varying initial chemical oxygen demand(COD) concentration. The CACSF system managed to produce effluents complying with the drinking water standards for the parameters p H, dissolved oxygen(DO), biochemical oxygen demand(BOD5), COD, total suspended solids(TSS), and ammonia nitrogen(NH_3-N). The CACSF system successfully decreased the population of Escherichia coli(E. coli) in the influents to less than 30 CFU/m L. Samples with a higher population of E. coli(that is, greater than 30 CFU/m L) did not show 100% removal. The system also showed high potential as an alternative for treated drinking water for roof-harvested rainwater and class II lake water.