Vertical picking method is a predominate method used to harvest cotton crop.However,a vertical picking method may cause spindle bending of the cotton picker if spindles collide with stones on the cotton field.Thus,how...Vertical picking method is a predominate method used to harvest cotton crop.However,a vertical picking method may cause spindle bending of the cotton picker if spindles collide with stones on the cotton field.Thus,how to realize a precise height control of the cotton picker is a crucial issue to be solved.The objective of this study is to design a height control system to avoid the collision.To design it,the mathematical models are established first.Then a multi-objective optimization model represented by structure parameters and control parameters is proposed to take the pressure of chamber without piston,response time and displacement error of the height control system as the opti-mization objectives.An integrated optimization approach that combines optimization via simulation,particle swarm optimization and simulated annealing is proposed to solve the model.Simulation and experimental test results show that the proposed integrated optimization approach can not only reduce the pressure of chamber without piston,but also decrease the response time and displacement error of the height control system.展开更多
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design re...Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design requirement of the composite frame since structural resonance can be effectively avoided with the increase of the fundamental frequency.Inspired by the concept of integrated design optmization of composite frame structures and materials,the design optimization for the maximum structural fundamental frequency of fiber reinforced frame structures is proposed.An optimization model oriented at the maximum structural fundamental frequency under a composite material volume constraint is established.Two kinds of independent design variables are optimized,in which one is variables represented structural topology,the other is variables of continuous fiber winding angles.Sensitivity analysis of the frequency with respect to the two kinds of independent design variables is implemented with the semi-analytical sensitivity method.Some representative examples in the manuscript demonstrate that the integrated design optimization of composite structures can effectively explore coupled effects between structural configurations and material properties to increase the structural fundamental frequency.The proposed integrated optimization model has great potential to improve composite frames structural dynamic performance in aerospace industries.展开更多
Dynamic analysis of scissor hydraulic lift platform has been performed to invest/gate the key factors which determine size and shape of the platfolan. By using MATLAB, the position of hydraulic cylinder has been optim...Dynamic analysis of scissor hydraulic lift platform has been performed to invest/gate the key factors which determine size and shape of the platfolan. By using MATLAB, the position of hydraulic cylinder has been optimized to reduce jacking force of piston and the whole system. Thus structure deformation decreases which is beneficial to control accuracy. Additionally, a new proportion integration differentiation (PID) control mode based on BP neural network has been developed to improve the stability and accuracy for the pasitio^L control in this system. Compared with existing PID tuning meth~~ls and fuzzy self-adjusted PID controllers, the proposed back propagation (BP) based PID controller can achieve better performance for a wide range of complex processes and realize self-tuning of parameters. It was confirmed that the performance of the lift platform regarding the force variation and position accuracy was greatly enhanced by optimizing of the system both in structure and control. Considerable economic benefit can also be achieved thrangh the application of this intelligent PID system.展开更多
The purpose of this paper is to demonstrate an integrated optimization scheme for a solar-powered drone structure.Consider a primary beam in the wing of large aspect ratio,where 100 lithium batteries are assembled.In ...The purpose of this paper is to demonstrate an integrated optimization scheme for a solar-powered drone structure.Consider a primary beam in the wing of large aspect ratio,where 100 lithium batteries are assembled.In the proposed integrated optimization,the batteries are considered here as parts of the load-carrying structure.The corresponding mechanical behaviors are simulated in the structural design and described with super-elements.The batteries layout and the structural topology are then introduced as mixed design variables and optimized simultaneously to achieve an accordant load-carrying path.Geometrical nonlinearity is considered due to the large deformation.Different periodic structural configurations are tested in the optimization in order to meet the structural manufacturing and assembly convenience.The optimized designs are rebuilt and tested in different load cases.Maintaining the same structural weight,the global mechanical performances are improved greatly compared with the initial design.展开更多
The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices.Recently,we have constructed well-organized and integrated three-dimensional(3D)carbon tu...The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices.Recently,we have constructed well-organized and integrated three-dimensional(3D)carbon tube(CT)grids(3D-CTGs)using a 3D porous anodic aluminum oxide template-assisted method as electrodes of electrical double-layer capacitors(EDLCs),showing excellent frequency response performance.The unique design warrants fast ion migration channels,excellent electronic conductivity,and good structural stability.This study achieved one of the highest carbon-based ultrahigh-power EDLCs with the 3D-CTG electrodes,resulting in ultrahigh power of 437 and 1708 W·cm−3 with aqueous and organic electrolytes,respectively.Capacitors constructed with these electrodes would have important application prospects in the ultrahigh-power output.The rational design and fabrication of the 3D-CTGs electrodes have demonstrated their capability to build capacitors with ultrahighpower performance and open up new possibilities for applications requiring high-power output.展开更多
A static and dynamic collaborative optimization method for materials and structure with uniform periodic microstructure is presented.The sensitivity formulae of hierarchical optimization,i.e.,material design,structure...A static and dynamic collaborative optimization method for materials and structure with uniform periodic microstructure is presented.The sensitivity formulae of hierarchical optimization,i.e.,material design,structure design and integrated design for porous metals,are given.On the base of the hierarchical optimization model,numerical experiments of an MBB beam and a cantilever one were carried out.Based on porous metals bearing multi-functionality,the differences and applicability of hierarchical optimization are discussed in the structure loading field.It is concluded that structure design is mainly oriented to structure efficiency,material design is mainly oriented to multi-functionality,and integrated design is oriented to structure efficiency and multi-functionality.This work provides some useful ideas for the selection of porous metals design method.展开更多
为提高电动载货汽车轻量化水平,本文提出了一种车架与电池舱一体化(cell to frame-简称“CTF”)结构。首先建立对标车型车架有限元模型,计算了其静力学性能与自由模态,并通过自由模态试验验证有限元模型的准确性。然后采用道路实采的多...为提高电动载货汽车轻量化水平,本文提出了一种车架与电池舱一体化(cell to frame-简称“CTF”)结构。首先建立对标车型车架有限元模型,计算了其静力学性能与自由模态,并通过自由模态试验验证有限元模型的准确性。然后采用道路实采的多工况组合疲劳载荷谱在时域内运用名义应力法进行车架疲劳寿命分析。接着对经有限元分析验证合理的CTF结构初始设计进行试验设计并建立代理模型。最后采用全局响应面法进行优化设计,获得最佳轻量化方案。结果表明,优化设计后,CTF结构质量相较于传统的车架与电池舱分离设计结构轻量139.95 kg,轻量化率达14.09%,同时CTF结构力学性能与疲劳寿命均满足设计要求。展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51905448)Chongqing Technology Innovation and Application Program of China(Grant No.cstc2018jszx-cyzdX0183)Fundamental Research Funds for the Central Universities of China(Grant No.SWU119060).
文摘Vertical picking method is a predominate method used to harvest cotton crop.However,a vertical picking method may cause spindle bending of the cotton picker if spindles collide with stones on the cotton field.Thus,how to realize a precise height control of the cotton picker is a crucial issue to be solved.The objective of this study is to design a height control system to avoid the collision.To design it,the mathematical models are established first.Then a multi-objective optimization model represented by structure parameters and control parameters is proposed to take the pressure of chamber without piston,response time and displacement error of the height control system as the opti-mization objectives.An integrated optimization approach that combines optimization via simulation,particle swarm optimization and simulated annealing is proposed to solve the model.Simulation and experimental test results show that the proposed integrated optimization approach can not only reduce the pressure of chamber without piston,but also decrease the response time and displacement error of the height control system.
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.
基金Financial supports for this research were provided by the National Natural Science Foundation of China(Grants 11372060,11672057 and 11711530018)the 111 Project(Grant B14013)the Program of BK21 Plus.These supports are gratefully acknowledged.
文摘Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design requirement of the composite frame since structural resonance can be effectively avoided with the increase of the fundamental frequency.Inspired by the concept of integrated design optmization of composite frame structures and materials,the design optimization for the maximum structural fundamental frequency of fiber reinforced frame structures is proposed.An optimization model oriented at the maximum structural fundamental frequency under a composite material volume constraint is established.Two kinds of independent design variables are optimized,in which one is variables represented structural topology,the other is variables of continuous fiber winding angles.Sensitivity analysis of the frequency with respect to the two kinds of independent design variables is implemented with the semi-analytical sensitivity method.Some representative examples in the manuscript demonstrate that the integrated design optimization of composite structures can effectively explore coupled effects between structural configurations and material properties to increase the structural fundamental frequency.The proposed integrated optimization model has great potential to improve composite frames structural dynamic performance in aerospace industries.
文摘Dynamic analysis of scissor hydraulic lift platform has been performed to invest/gate the key factors which determine size and shape of the platfolan. By using MATLAB, the position of hydraulic cylinder has been optimized to reduce jacking force of piston and the whole system. Thus structure deformation decreases which is beneficial to control accuracy. Additionally, a new proportion integration differentiation (PID) control mode based on BP neural network has been developed to improve the stability and accuracy for the pasitio^L control in this system. Compared with existing PID tuning meth~~ls and fuzzy self-adjusted PID controllers, the proposed back propagation (BP) based PID controller can achieve better performance for a wide range of complex processes and realize self-tuning of parameters. It was confirmed that the performance of the lift platform regarding the force variation and position accuracy was greatly enhanced by optimizing of the system both in structure and control. Considerable economic benefit can also be achieved thrangh the application of this intelligent PID system.
基金This work is supported by Key Project of Natural Science Foundation of China(Nos.51790171,51761145111,51735005)Natural Science Foundation of China for Excellent Young Scholars(No.11722219).
文摘The purpose of this paper is to demonstrate an integrated optimization scheme for a solar-powered drone structure.Consider a primary beam in the wing of large aspect ratio,where 100 lithium batteries are assembled.In the proposed integrated optimization,the batteries are considered here as parts of the load-carrying structure.The corresponding mechanical behaviors are simulated in the structural design and described with super-elements.The batteries layout and the structural topology are then introduced as mixed design variables and optimized simultaneously to achieve an accordant load-carrying path.Geometrical nonlinearity is considered due to the large deformation.Different periodic structural configurations are tested in the optimization in order to meet the structural manufacturing and assembly convenience.The optimized designs are rebuilt and tested in different load cases.Maintaining the same structural weight,the global mechanical performances are improved greatly compared with the initial design.
基金supported by the National Natural Science Foundation of China(Nos.91963202,52072372,and 52232007).
文摘The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices.Recently,we have constructed well-organized and integrated three-dimensional(3D)carbon tube(CT)grids(3D-CTGs)using a 3D porous anodic aluminum oxide template-assisted method as electrodes of electrical double-layer capacitors(EDLCs),showing excellent frequency response performance.The unique design warrants fast ion migration channels,excellent electronic conductivity,and good structural stability.This study achieved one of the highest carbon-based ultrahigh-power EDLCs with the 3D-CTG electrodes,resulting in ultrahigh power of 437 and 1708 W·cm−3 with aqueous and organic electrolytes,respectively.Capacitors constructed with these electrodes would have important application prospects in the ultrahigh-power output.The rational design and fabrication of the 3D-CTGs electrodes have demonstrated their capability to build capacitors with ultrahighpower performance and open up new possibilities for applications requiring high-power output.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2010CB832700)the Science and Technology Development Fundation of Academy of Engineering Physics(Grant No. 2008A0302011)
文摘A static and dynamic collaborative optimization method for materials and structure with uniform periodic microstructure is presented.The sensitivity formulae of hierarchical optimization,i.e.,material design,structure design and integrated design for porous metals,are given.On the base of the hierarchical optimization model,numerical experiments of an MBB beam and a cantilever one were carried out.Based on porous metals bearing multi-functionality,the differences and applicability of hierarchical optimization are discussed in the structure loading field.It is concluded that structure design is mainly oriented to structure efficiency,material design is mainly oriented to multi-functionality,and integrated design is oriented to structure efficiency and multi-functionality.This work provides some useful ideas for the selection of porous metals design method.
文摘为提高电动载货汽车轻量化水平,本文提出了一种车架与电池舱一体化(cell to frame-简称“CTF”)结构。首先建立对标车型车架有限元模型,计算了其静力学性能与自由模态,并通过自由模态试验验证有限元模型的准确性。然后采用道路实采的多工况组合疲劳载荷谱在时域内运用名义应力法进行车架疲劳寿命分析。接着对经有限元分析验证合理的CTF结构初始设计进行试验设计并建立代理模型。最后采用全局响应面法进行优化设计,获得最佳轻量化方案。结果表明,优化设计后,CTF结构质量相较于传统的车架与电池舱分离设计结构轻量139.95 kg,轻量化率达14.09%,同时CTF结构力学性能与疲劳寿命均满足设计要求。