After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are recei...After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells.Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells,including 2-terminal and 4-terminal structures.However,very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells.In this work,semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells,achieving a power conversion efficiency of 21.25%for the tandem cells with spin-coated perovskite layer.By using drop-coating instead of spin-coating to make the inorganic perovskite films,4-terminal tandem cells with an efficiency of 22.34%are made.The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells.In addition,equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series.The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter.展开更多
For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is ch...For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is challenging to effectively optimize this interface as it is buried beneath the perovskite film.Herein,we have designed and synthesized a series of multifunctional organic-inorganic(OI)complexes as buried interfacial material to promote electron extraction,as well as the crystal growth of the perovskite.The OI complex with BF4−group not only eliminates oxygen vacancies on the SnO_(2) surface but also balances energy level alignment between SnO_(2) and perovskite,providing a favorable environment for charge carrier extraction.Moreover,OI complex with amine(−NH_(2))functional group can regulate the crystallization of the perovskite film via interaction with PbI2,resulting in highly crystallized perovskite film with large grains and low defect density.Consequently,with rational molecular design,the PSCs with optimal OI complex buried interface layer which contains both BF4−and−NH_(2) functional groups yield a champion device efficiency of 23.69%.More importantly,the resulting unencapsulated device performs excellent ambient stability,maintaining over 90%of its initial efficiency after 2000 h storage,and excellent light stability of 91.5%remaining PCE in the maximum power point tracking measurement(under continuous 100 mW cm−2 light illumination in N2 atmosphere)after 500 h.展开更多
In recent years,inverted perovskite solar cells(IPSCs)have attracted significant attention due to their low-temperature and cost-effective fabrication processes,hysteresis-free properties,excellent stability,and wide ...In recent years,inverted perovskite solar cells(IPSCs)have attracted significant attention due to their low-temperature and cost-effective fabrication processes,hysteresis-free properties,excellent stability,and wide application.The efficiency gap between IPSCs and regular structures has shrunk to less than 1%.Over the past few years,IPSC research has mainly focused on optimizing power conversion efficiency to accelerate the development of IPSCs.This review provides an overview of recent improvements in the efficiency of IPSCs,including interface engineering and novel film production techniques to overcome critical obstacles.Tandem and integrated applications of IPSCs are also summarized.Furthermore,prospects for further development of IPSCs are discussed,including the development of new materials,methods,and device structures for novel IPSCs to meet the requirements of commercialization.展开更多
Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal...Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal-organic frameworks(MOFs)with tunable Lewis-base passivation sites have been constructed(Cd-Httb and Cd-Httb-BDC,Httb=5-(4-(1H-1,2,4-triazole-1-yl)benzyl)-1h-tetrazole,BDC=1,4-dicarboxybenzene)to eliminate deep-level defects and simultaneously as nanostructured heterogeneous nucleation seed to assist the growth of large-grained perovskite films.Compared with the control and Cd-Httb,Cd-Httb-BDC designed with mix-ligands strategy exhibited the enhanced inducted effect on the crystallization and nucleation of high-quality perovskite films during annealing process.Consequently,the resultant Cd-Httb-BDC-modified device achieved higher power conversion efficiency(PCE)(22.18%)than the control(20.89%)and Cd-Httb(21.56%).Meanwhile,the unencapsulated Cd-Httb-BDC-modified device still maintained 90%of initial PCE after 1500 h in ambient conditions and exhibited enhanced thermal stability(85℃ in N_(2) atmosphere).This work presented a successful example of mixligands strategy on construction of high-quality MOF-assisted perovskite films for high-efficient and stable PSCs.展开更多
The concept of tandem solar cells(TSCs) is an effective way to substantially further improve the efficiency of solar cells. The excellent optoelectronic properties and bandgap tunability of perovskites make them promi...The concept of tandem solar cells(TSCs) is an effective way to substantially further improve the efficiency of solar cells. The excellent optoelectronic properties and bandgap tunability of perovskites make them promising for constructing efficient TSCs. Currently, TSCs based on perovskite have been extensively studied. Besides, the performance of organic solar cells has been greatly improved recently due to the wider and more efficient spectral utilization. Accordingly, research on perovskite/organic TSCs has garnered significant attention. It has potential application advantages in emerging fields such as wearable devices by virtue of flexibility. In addition, orthogonal solvents can be adopted to realize the separate preparation of subcells with the solution method, which greatly reduces fabrication complexity;moreover, fabrication with less equipment significantly cuts down the device cost. Meanwhile, organics with more adjustability on the optoelectronic properties provide more tuning strategies for high-performance perovskite/organic TSCs. However, comprehensive and timely reviews on the perovskite/organic TSCs are deficient. Therefore, we expect to accomplish a review on this innovative TSCs to facilitate researchers with a deeper understanding of perovskite/organic TSCs. Herein, we firstly review the significant progress of perovskite and organic solar cells. Then, current achievements of perovskite/organic TSCs are summarized and introduced with a particular focus on the device structure design. Finally, we discuss existential challenges and propose effective strategies for future engineering.展开更多
Although covalent organic frameworks(COFs)with highπ-conjugation have recently exhibited great prospects in perovskite solar cells(PSCs),their further application in PSCs is still hindered by face-to-face stacking an...Although covalent organic frameworks(COFs)with highπ-conjugation have recently exhibited great prospects in perovskite solar cells(PSCs),their further application in PSCs is still hindered by face-to-face stacking and aggregation issues.Herein,metal-organic framework(MOF-808)is selected as an ideal platform for the in situ homogeneous growth of a COF to construct a core-shell MOF@COF nanoparticle,which could effectively inhibit COF stacking and aggregation.The synergistic intrinsic mechanisms induced by the MOF@COF nanoparticles for reinforcing intrinsic stability and mitigating lead leakage in PSCs have been explored.The complementary utilization ofπ-conjugated skeletons and nanopores could optimize the crystallization of large-grained perovskite films and eliminate defects.The resulting PSCs achieve an impressive power conversion efficiency of 23.61%with superior open circuit voltage(1.20 V)and maintained approximately 90%of the original power conversion efficiency after 2000 h(30-50%RH and 25-30℃).Benefiting from the synergistic effects of the in situ chemical fixation and adsorption abilities of the MOF@COF nanoparticles,the amount of lead leakage from unpackaged PSCs soaked in water(<5 ppm)satisfies the laboratory assessment required for the Resource Conservation and Recovery Act Regulation.展开更多
In this paper,we present a facile approach to enhance the efficiency and stability of perovskite solar cells(PSCs)by incorporating perovskite with microporous indium-based metal–organic framework[In12O(OH)16(H2O)5(bt...In this paper,we present a facile approach to enhance the efficiency and stability of perovskite solar cells(PSCs)by incorporating perovskite with microporous indium-based metal–organic framework[In12O(OH)16(H2O)5(btc)6]n(In-BTC)nanocrystals and forming heterojunction light-harvesting layer.The interconnected micropores and terminal oxygen sites of In-BTC allow the preferential crystallization of perovskite inside the regular cavities,endowing the derived films with improved morphology/crystallinity and reduced grain boundaries/defects.Consequently,the In-BTC-modified PSC yields enhanced fill factor of 0.79 and power conversion efficiency(PCE)of 20.87%,surpassing the pristine device(0.76 and 19.52%,respectively).More importantly,over 80%of the original PCE is retained after 12 days of exposure to ambient environment(25°C and relative humidity of^65%)without encapsulation,while only about 35%is left to the pristine device.展开更多
Lead(Pb)^(0) and iodine(I)^(0) point defects generated during perovskite solar cell(PSC)fabrication and photoconversion form deep band energy levels as the carriers’recombination centers.These defects not only deteri...Lead(Pb)^(0) and iodine(I)^(0) point defects generated during perovskite solar cell(PSC)fabrication and photoconversion form deep band energy levels as the carriers’recombination centers.These defects not only deteriorate device efficiency,but also facilitate chemical degradation with ion migration,resulting in restricted device lifetime.Herein,we present a novel type of phosphines as the point defects stabilizer for hybrid perovskite solar cells with enhanced performances.Three phosphines with varied side groups of tributyl,trioctyl and triphenyl are exampled as the dopants in perovskite films.The group dependent redox properties were observed in the perovskite film,dependent on their molecular weights and steric hinderances of phosphines.The partially oxidized tributyl phosphine(TBUP)with additional tributyl phosphine oxides(TBPO)is efficient in reduction of lead(Pb)^(0) and iodine(I)^(0) concentrations during the device fabrication and operation.The device with TBUP-TBPO pair showed enhanced power conversion efficiency(PCE)to 20.48% and maintain 91.7% of their initial PCEs after 500 h at 65℃ thermal annealing.Thus,this work presents an efficient route of utilize the phosphine species to reduce point defects in the perovskite film,which promoting further development of novel phosphorous additives with defects stabilization,interface passivation and encapsulation for low-cost solution processed PSCs.展开更多
Perovskite quantum dots(PQDs)have been considered promising and effective photovoltaic absorber due to their superior optoelectronic properties and inherent material merits combining perovskites and QDs.However,they e...Perovskite quantum dots(PQDs)have been considered promising and effective photovoltaic absorber due to their superior optoelectronic properties and inherent material merits combining perovskites and QDs.However,they exhibit low moisture stability at room humidity(20-30%)owing to many surface defect sites generated by inefficient ligand exchange process.These surface traps must be re-passivated to improve both charge transport ability and moisture stability.To address this issue,PQD-organic semiconductor hybrid solar cells with suitable electrical properties and functional groups might dramatically improve the charge extraction and defect passivation.Conventional organic semiconductors are typically low-dimensional(1D and 2D)and prone to excessive self-aggregation,which limits chemical interaction with PQDs.In this work,we designed a new 3D star-shaped semiconducting material(Star-TrCN)to enhance the compatibility with PQDs.The robust bonding with Star-TrCN and PQDs is demonstrated by theoretical modeling and experimental validation.The Star-TrCN-PQD hybrid films show improved cubic-phase stability of CsPbI_(3)-PQDs via reduced surface trap states and suppressed moisture penetration.As a result,the resultant devices not only achieve remarkable device stability over 1000 h at 20-30%relative humidity,but also boost power conversion efficiency up to 16.0%via forming a cascade energy band structure.展开更多
The emergence of perovskite solar cells(PSCs) has greatly promoted the progress of photovoltaic technologies.The rapid development of PSCs has been driven by the advances in optimizing perovskite films and their adjac...The emergence of perovskite solar cells(PSCs) has greatly promoted the progress of photovoltaic technologies.The rapid development of PSCs has been driven by the advances in optimizing perovskite films and their adjacent interfaces.However,the polycrystalline perovskite layers in most highly efficient PSCs still contain various defects that greatly limit photovoltaic performance and stability of the devices.Herein,we introduce a multifunctional additive ethylene diamine tetra methylene phosphonic sodium(EDTMPS) with multiple anchor points into the precursor of perovskite to improve the efficiency and stability of PSCs and provide in-situ protection of lead leakage.The addition of EDTMPS acts as a crystal growth controller and passivation agent for perovskite films,thereby slowing down the crystallization rate of the film and obtaining high-quality perovskite films.Our study also provides an insight into how the modifier modulate the interfacial energy level arrangement as well as affect transfer of charge carriers and their recombination under photoinduced excitation.As a result,the power conversion efficiency(PCE) of single subcell with a working area of 0.255 cm^(2) increases significantly from 20.03% to 23.37%.Moreover,we obtained a PCE of 19.16% for the 25 cm^(2) module.Importantly,the unencapsulated EDTMP-modified PSCs exhibit better operational and thermal stability,as well as in-situ absorption of leaked lead ions.展开更多
Although the efficiency of organic–inorganic hybrid halide perovskite solar cells has been improved rapidly, the intrinsic instability of perovskite materials restricts their commercial application. Here, an eco-frie...Although the efficiency of organic–inorganic hybrid halide perovskite solar cells has been improved rapidly, the intrinsic instability of perovskite materials restricts their commercial application. Here, an eco-friendly and low-cost organic polymer, cellulose acetate butyrate(CAB), was introduced to the grain boundaries and surfaces of perovskite, resulting in a high-quality and low-defect perovskite film with a nearly tenfold improvement in carrier lifetime. More importantly, the CAB-treated perovskite films have a well-matched energy level with the charge transport layers, thus suppressing carrier nonradiative recombination and carrier accumulation. As a result, the optimized CAB-based device achieved a champion efficiency of 21.5% compared to the control device(18.2%). Since the ester group in CAB bonds with Pb in perovskite, and the H and O in the hydroxyl group bond with the I and organic cations in perovskite,respectively, it will contribute to superior stability under heat, high humidity, and light soaking conditions. After aging under 35% humidity(relative humidity, RH) for 3300 h, the optimized device can still maintain more than 90% of the initial efficiency;it can also retain more than 90% of the initial efficiency after aging at 65 ℃, 65% RH, or light(AM 1.5G) for 500 h. This simple optimization strategy for perovskite stability could facilitate the commercial application of perovskite solar cells.展开更多
Power conversion efficiency(PCE) of perovskite solar cells(PSC) has been skyrocketed to certified 25.5% owing to their improved and tunable optoelectronic properties. Although, various strategies have been adopted to ...Power conversion efficiency(PCE) of perovskite solar cells(PSC) has been skyrocketed to certified 25.5% owing to their improved and tunable optoelectronic properties. Although, various strategies have been adopted to date regarding PCE and stability enhancement within PSC technology, certain instability factors(moisture, heat, light) are hindering their commercial placement. Recently, all-inorganic PSCs got hype in the photovoltaic research community after they attained PCE > 20% and due to their significant endurance against heat and light mishmashes, but there only left moisture sensitivity as the only roadblock for their industrial integration. Here, we review the recent progress of additive inclusion into allinorganic(CsPbX_(3)) PSCs to stabilize their intrinsic structure and to withstand the performance limiting factors. We start with the detailed description of chemical instability of different perovskite compositions, phase segregation, and how organic molecules and dyes help to repair the structural defects to improve the overall PCE and stability of PSCs. Moisture endurance as a result of chemical passivation through organic additives, low-dimensional inorganic PSCs to enhance device stability and scalable fabrication of CsPbX_(3) PSCs are also reviewed. The challenges of module degradation and design implications with proposed strategies and outlook are interpreted in the ending phrases of this review.展开更多
Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and...Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and polymers,yet the use of organic metal complexes in PSCs applications remains less explored.To date,most of reported HTMs require additional chemical additives(e.g.Li-TFSI,t-TBP)towards high performance,however,the introduction of additives decrease the PSCs device stability.Herein,an organic metal complex(Ni-TPA)is first developed as a dopant-free HTM applied in PSCs for its facile synthesis and efficient hole extract/transfer ability.Consequently,the dopant-free Ni-TPAbased device achieves a champion efficiency of 17.89%,which is superior to that of pristine Spiro-OMeTAD(14.25%).Furthermore,we introduce a double HTM layer with a graded energy bandgap containing a Ni-TPA layer and a CuSCN layer into PSCs,the non-encapsulated PSCs based on the Ni-TPA/CuSCN layers affords impressive efficiency up to 20.39%and maintains 96%of the initial PCE after 1000 h at a relative humidity around 40%.The results have demonstrated that metal organic complexes represent a great promise for designing new dopant-free HTMs towards highly stable PSCs.展开更多
During the last decade,perovskite solar technologies underwent an impressive development,with power conversion efficiencies reaching 25.5%for single-junction devices and 29.8%for Silicon-Perovskite tandem configuratio...During the last decade,perovskite solar technologies underwent an impressive development,with power conversion efficiencies reaching 25.5%for single-junction devices and 29.8%for Silicon-Perovskite tandem configurations.Even though research mainly focused on improving the efficiency of perovskite photovoltaics(PV),stability and scalability remain fundamental aspects of a mature photovoltaics technology.For n-i-p structure perovskite solar cells,using poly-triaryl(amine)(PTAA)as hole transport layer(HTL)allowed to achieve marked improvements in device stability compared with other common hole conductors.For p-i-n structure,poly-triaryl(amine)is also routinely used as dopant-free hole transport layer,but problems in perovskite film growth,and its limited resistance to stress and imperfect batch-to-batch reproducibility,hamper its use for device upscaling.Following previous computational investigations,in this work,we report the synthesis of two small-molecule organic hole transport layers(BPT-1,2),aiming to solve the above-mentioned issues and allow upscale to the module level.By using BPT-1 and methylammonium-free perovskite,max.Power conversion efficiencies of 17.26%and 15.42%on a small area(0.09 cm^(2))and mini-module size(2.25 cm^(2)),respectively,were obtained,with a better reproducibility than with poly-triaryl(amine).Moreover,BPT-1 was demonstrated to yield more stable devices compared with poly-triaryl(amine)under ISOS-D1,T1,and L1 accelerated life-test protocols,reaching maximum T_(90)values>1000 h on all tests.展开更多
With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the pr...With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the practical application requirements of BIPVs,in addition to the evaluation indicator of power conversion efficiency(PCE),other key performance indicators such as heat-insulating ability,average visible light transmittance(AVT),color properties,and integrability are equally important.The traditional Si-based photovoltaic technology is typically limited by its opaque properties for application scenarios where transparency is required.The emerging PV technologies,such as organic and perovskite photovoltaics are promising candidates for BIPV applications,owing to their advantages such as high PCE,high AVT,and tunable properties.At present,the PCE of semitransparent perovskite solar cells(ST-PSCs)has attained 14%with AVT of 22–25%;for semitransparent organic solar cells(ST-OSCs),the PCE reached 13%with AVT of almost 40%.In this review article,we summarize recent advances in material selection,optical engineering,and device architecture design for high-performance semitransparent emerging PV devices,and discuss the application of optical modeling,as well as the challenges of commercializing these semitransparent solar cells for building-integrated applications.展开更多
Monolithic perovskite/organic tandem solar cells(TSCs)have emerged as promising thin film solar cells.It is recognized that interconnect junction plays a pivotal role in tandem devices.Consequently,wide bandgap Cs_(0....Monolithic perovskite/organic tandem solar cells(TSCs)have emerged as promising thin film solar cells.It is recognized that interconnect junction plays a pivotal role in tandem devices.Consequently,wide bandgap Cs_(0.25)FA_(0.75)Pb(I_(0.6)Br_(0.4))_(3)perovskite top-cell and narrow bandgap PM6:Y6:PC_(61)BM ternary organic bottom-cell were integrated in this study with several kinds of thin metal interconnect layers,which provides feasibility to elaborately manipulate light transmission and carrier tunneling process in interconnect junction.It is confirmed that,in comparison with Au,employing an Ag interconnect layer elevates integrated transmittance of light in longer wavelength regions,mainly because of the alleviated screening effect with a lower free electron concentration,which offers sufficient light harvest for the bottom-cell.Meanwhile,established energy barriers with moderate height afford convenient extraction and recombination for both holes and electrons.Hence,the performance of TSCs is promoted substantially.Moreover,an innovative Ag/Au double interconnect layer is proposed accordingly,which can preserve exceptional conductivity and light transmission and further reduce barrier height,especially for hole tunneling,by optimizing the band alignment between the interconnect layer and bottom-cell.Resultantly,the monolithic perovskite/organic TSC with a striking efficiency of 23.26% is achieved.In a word,this study can pave a general approach toward high-performance TSCs integration.展开更多
Monolithic perovskite/organic tandem solar cells(TsCs)have gained significant attention due to their easy device integration and the potential to surpass the Shockley-Queisser limit of single-junction solar cells.Howe...Monolithic perovskite/organic tandem solar cells(TsCs)have gained significant attention due to their easy device integration and the potential to surpass the Shockley-Queisser limit of single-junction solar cells.However,the surfaces of wide-bandgap perovskite films are densely populated with defects,leading to severe non-radiative recombination and energy loss.As a consequence,the power conversion efficiency(PCE)of perovskite/organic TSCs lags behind that of other TSC counterparts.To address these issues,we designed a functional ammonium salt,4-(2-hydroxyethyl)piperazin-1-ium iodide(Pzol),comprising a piperazine iodide and a terminated hydroxyl group,which was applied for post-treating the perovskite surface.Our findings reveal that Pzol reacts with and consumes residual PbX_(2)(X:I or Br)to form a 2D perovskite component,thereby eliminating Pb^(0)defects,while the terminated hydroxyl group in PZOI can also passivate uncoordinated Pb^(2+).Consequently,the shallow/deep-level defect densities of the 2D/3D perovskite film were significantly reduced,leading to an enhanced PCE of single-junction 2D/3D wide-bandgap perovskite solar cells to 18.18% with a reduced energy loss of 40 mev.Importantly,the corresponding perovskite/organic TSCs achieved a remarkable PCE of 24.05% with enhanced operational stability(T_(90)~500h).展开更多
Donor-Acceptor(D-A)alignment is considered a productive strategy to improve the charge separation efficiency of covalent organic frameworks(COFs)and enhance the charge-transfer yield(CTY)of COFs.Moreover,organic molec...Donor-Acceptor(D-A)alignment is considered a productive strategy to improve the charge separation efficiency of covalent organic frameworks(COFs)and enhance the charge-transfer yield(CTY)of COFs.Moreover,organic molecules containing heteroatoms can produce coordination interaction with PbI2 of perovskite precursor to affect the crystallization process,thereby impeding the decomposition and improving the stability of perovskite materials.Herein,a thiazolo[5,4-d]thiazole(TZ)-based D-A type COF_(TPDA-TZDA) was designed and synthesized from N,N,N′,N′-tetrakis(4-aminophenyl)-1,4-benzenediamine(TPDA)and 4,4′-(thiazolo[5,4-d]thiazole-2,5-diyl)dibenzaldehyde(TZDA).Upon incorporation into the FAPbI3 layer,COF_(TPDA-TZDA) not only restrained the perovskite defects and enhanced the grain size of perovskite films through the coordination effect of the N atoms of TZDA but also ameliorated the charge transport within the perovskite film,which was the benefit of the D-A structure of COF_(TPDA-TZDA).As a result,incorporation of COF_(TPDA-TZDA) into the perovskite solar cells(PSCs)led to a remarkable power conversion efficiency(PCE)of up to 23.51%.Furthermore,even after being stored in high relative humidity(RH≈60%)for 480 h,these PSCs maintained over 90.55%of their original PCE.This work sets the foundation for the development of highly efficient and stable PSCs by utilizing TZ-based D-A type COFs.展开更多
Low dimensional perovskites have recently attracted much attention due to their vertical growth of crys- talline orientation, excellent film morphology, and long-term humidity, light, and heat stability, How- ever, lo...Low dimensional perovskites have recently attracted much attention due to their vertical growth of crys- talline orientation, excellent film morphology, and long-term humidity, light, and heat stability, How- ever, low dimensional perovskites suffer fl'om low power conversion efficiency (PCE) with respect to their three dimensional analogues. Therefore, it is imperative to find excellent low-dimensional perovskite materials for improving the PCE. Previous work has demonstrated that bulkier organic molecules, e,g., C6Hs(CH2)2NH3+ (PEA+), CH3(CH2)3NH3+(n-BAT, iso-BA+), C2H4NH3 +, and polyethylenimine cations (PEI+), play an important role in the formation of low-dimensional perovskites. In this review, we review the recent development of low dimensional perovskites for solar cells application in terms of film preparation, photophysics, and stability of perovskites, as well as the related device structure and physics. We have also discussed the future development of low-dimensional perovskites from materials design, fabri- cation processes, and device structure.展开更多
As one of the core parts of two-terminal(2 T) monolithic tandem photovoltaics, the interconnecting layers(ICLs) play a critical role in modulating the carrier transport and recombination between the sub-cells,and thus...As one of the core parts of two-terminal(2 T) monolithic tandem photovoltaics, the interconnecting layers(ICLs) play a critical role in modulating the carrier transport and recombination between the sub-cells,and thus influencing the tandem device performance. Here, for the first time, the relationship between ICLs architecture and 2 T monolithic perovskite/organic tandem device performance has been studied by investigating the change of ICLs composition layer thickness on the ICLs optical and electrical properties, sub-cells EQE properties, and tandem device J-V properties. It is revealed that the ability of ICLs on modulating the sub-cells carrier balance properties is strongly associated with its composited layers thickness, and the tandem device carrier balance properties can be reflected by the relative EQE intensity between the sub-cells. Finally, with a deep understanding of the mechanisms, rational design of ICLs can be made to benefit the tandem device development. Based on the optimized ICL a high PCE of 20.03% is achieved.展开更多
基金We thank the National Key Research and Development Program of China(2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)+1 种基金the National Natural Science Foundation of China(21961160720 and 52203217)the China Postdoctoral Science Foundation(2021M690805)for financial support.
文摘After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells.Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells,including 2-terminal and 4-terminal structures.However,very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells.In this work,semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells,achieving a power conversion efficiency of 21.25%for the tandem cells with spin-coated perovskite layer.By using drop-coating instead of spin-coating to make the inorganic perovskite films,4-terminal tandem cells with an efficiency of 22.34%are made.The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells.In addition,equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series.The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter.
基金The authors acknowledge the financial support from the Natural Science Foundation of China(Nos.21931002 and 22101123)the National Key Research and Development Program of China(2018YFB0704100)+4 种基金the Shenzhen Science and Technology Innovation Committee(no.JCYJ20200109140812302)the Leading talents of Guangdong province program(2016LJ06N507)the Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(no.2018B030322001)the Guangdong Provincial Key Laboratory of Catalysis(no.2020B121201002)Outstanding Talents Training Fund in Shenzhen.
文摘For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is challenging to effectively optimize this interface as it is buried beneath the perovskite film.Herein,we have designed and synthesized a series of multifunctional organic-inorganic(OI)complexes as buried interfacial material to promote electron extraction,as well as the crystal growth of the perovskite.The OI complex with BF4−group not only eliminates oxygen vacancies on the SnO_(2) surface but also balances energy level alignment between SnO_(2) and perovskite,providing a favorable environment for charge carrier extraction.Moreover,OI complex with amine(−NH_(2))functional group can regulate the crystallization of the perovskite film via interaction with PbI2,resulting in highly crystallized perovskite film with large grains and low defect density.Consequently,with rational molecular design,the PSCs with optimal OI complex buried interface layer which contains both BF4−and−NH_(2) functional groups yield a champion device efficiency of 23.69%.More importantly,the resulting unencapsulated device performs excellent ambient stability,maintaining over 90%of its initial efficiency after 2000 h storage,and excellent light stability of 91.5%remaining PCE in the maximum power point tracking measurement(under continuous 100 mW cm−2 light illumination in N2 atmosphere)after 500 h.
基金the Research Grants Council of Hong Kong(GRF Grant Nos.15221320,CRF C7018-20G)the Shenzhen Science and Technology Innovation Commission(Project No.JCYJ 20200109105003940,SGDX20201103095403016)+6 种基金the Hong Kong Innovation and Technology Commission(GHP/205/20SZ)the Sir Sze-yuen Chung Endowed Professorship Fund(8-8480)provided by the Hong Kong Polytechnic Universitythe GuangdongHong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices(GDSTC No.2019B121205001)the National Natural Science Foundation of China(Grant No.91963129)the Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(Grant No.2018B030322001)the Student Innovation Training Program(Grant Nos.2021S07)from Southern University of Science and Technology(SUSTech)the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(pdjh2022c0003&pdjh2022c0005)。
文摘In recent years,inverted perovskite solar cells(IPSCs)have attracted significant attention due to their low-temperature and cost-effective fabrication processes,hysteresis-free properties,excellent stability,and wide application.The efficiency gap between IPSCs and regular structures has shrunk to less than 1%.Over the past few years,IPSC research has mainly focused on optimizing power conversion efficiency to accelerate the development of IPSCs.This review provides an overview of recent improvements in the efficiency of IPSCs,including interface engineering and novel film production techniques to overcome critical obstacles.Tandem and integrated applications of IPSCs are also summarized.Furthermore,prospects for further development of IPSCs are discussed,including the development of new materials,methods,and device structures for novel IPSCs to meet the requirements of commercialization.
基金supported by the National Natural Science Foundation of China(22072034,22001050,and 21873025)the China Postdoctoral Science Foundation(2020T130147,2020M681084,and 2022M710949)+1 种基金the Postdoctoral Foundation of Heilongjiang Province(LBH-Z19059)the Natural Science Foundation of Heilongjiang Youth Fund(YQ2021B002).
文摘Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal-organic frameworks(MOFs)with tunable Lewis-base passivation sites have been constructed(Cd-Httb and Cd-Httb-BDC,Httb=5-(4-(1H-1,2,4-triazole-1-yl)benzyl)-1h-tetrazole,BDC=1,4-dicarboxybenzene)to eliminate deep-level defects and simultaneously as nanostructured heterogeneous nucleation seed to assist the growth of large-grained perovskite films.Compared with the control and Cd-Httb,Cd-Httb-BDC designed with mix-ligands strategy exhibited the enhanced inducted effect on the crystallization and nucleation of high-quality perovskite films during annealing process.Consequently,the resultant Cd-Httb-BDC-modified device achieved higher power conversion efficiency(PCE)(22.18%)than the control(20.89%)and Cd-Httb(21.56%).Meanwhile,the unencapsulated Cd-Httb-BDC-modified device still maintained 90%of initial PCE after 1500 h in ambient conditions and exhibited enhanced thermal stability(85℃ in N_(2) atmosphere).This work presented a successful example of mixligands strategy on construction of high-quality MOF-assisted perovskite films for high-efficient and stable PSCs.
基金financial support from the National Key Research and Development Program of China,China (Grant No.2022YFB4200203)the Key project of Nature Science Foundation of Tianjin,China (22JCZDJC00120)the 111 Project,China(B16027)。
文摘The concept of tandem solar cells(TSCs) is an effective way to substantially further improve the efficiency of solar cells. The excellent optoelectronic properties and bandgap tunability of perovskites make them promising for constructing efficient TSCs. Currently, TSCs based on perovskite have been extensively studied. Besides, the performance of organic solar cells has been greatly improved recently due to the wider and more efficient spectral utilization. Accordingly, research on perovskite/organic TSCs has garnered significant attention. It has potential application advantages in emerging fields such as wearable devices by virtue of flexibility. In addition, orthogonal solvents can be adopted to realize the separate preparation of subcells with the solution method, which greatly reduces fabrication complexity;moreover, fabrication with less equipment significantly cuts down the device cost. Meanwhile, organics with more adjustability on the optoelectronic properties provide more tuning strategies for high-performance perovskite/organic TSCs. However, comprehensive and timely reviews on the perovskite/organic TSCs are deficient. Therefore, we expect to accomplish a review on this innovative TSCs to facilitate researchers with a deeper understanding of perovskite/organic TSCs. Herein, we firstly review the significant progress of perovskite and organic solar cells. Then, current achievements of perovskite/organic TSCs are summarized and introduced with a particular focus on the device structure design. Finally, we discuss existential challenges and propose effective strategies for future engineering.
基金supported by the National Natural Science Foundation of China(22072034,and 22001050)the China Postdoctoral Science Foundation(2022M710949,2020T130147,and 2020M681084)+2 种基金the Postdoctoral Foundation of Heilongjiang Province(LBH-Z22106,and LBH-Z19059)the Natural Science Foundation of Heilongjiang Youth Fund(YQ2021B002)Education Department of Heilongjiang Province(LJYXL2022-038).
文摘Although covalent organic frameworks(COFs)with highπ-conjugation have recently exhibited great prospects in perovskite solar cells(PSCs),their further application in PSCs is still hindered by face-to-face stacking and aggregation issues.Herein,metal-organic framework(MOF-808)is selected as an ideal platform for the in situ homogeneous growth of a COF to construct a core-shell MOF@COF nanoparticle,which could effectively inhibit COF stacking and aggregation.The synergistic intrinsic mechanisms induced by the MOF@COF nanoparticles for reinforcing intrinsic stability and mitigating lead leakage in PSCs have been explored.The complementary utilization ofπ-conjugated skeletons and nanopores could optimize the crystallization of large-grained perovskite films and eliminate defects.The resulting PSCs achieve an impressive power conversion efficiency of 23.61%with superior open circuit voltage(1.20 V)and maintained approximately 90%of the original power conversion efficiency after 2000 h(30-50%RH and 25-30℃).Benefiting from the synergistic effects of the in situ chemical fixation and adsorption abilities of the MOF@COF nanoparticles,the amount of lead leakage from unpackaged PSCs soaked in water(<5 ppm)satisfies the laboratory assessment required for the Resource Conservation and Recovery Act Regulation.
基金National Natural Science Foundation of China(Grant No.21873025 and 21571042).
文摘In this paper,we present a facile approach to enhance the efficiency and stability of perovskite solar cells(PSCs)by incorporating perovskite with microporous indium-based metal–organic framework[In12O(OH)16(H2O)5(btc)6]n(In-BTC)nanocrystals and forming heterojunction light-harvesting layer.The interconnected micropores and terminal oxygen sites of In-BTC allow the preferential crystallization of perovskite inside the regular cavities,endowing the derived films with improved morphology/crystallinity and reduced grain boundaries/defects.Consequently,the In-BTC-modified PSC yields enhanced fill factor of 0.79 and power conversion efficiency(PCE)of 20.87%,surpassing the pristine device(0.76 and 19.52%,respectively).More importantly,over 80%of the original PCE is retained after 12 days of exposure to ambient environment(25°C and relative humidity of^65%)without encapsulation,while only about 35%is left to the pristine device.
基金supported financially by the National Key Research and Development Plan,China(2017YFE0131900)the National Science Foundation of China(NSFC 51672202,21875178)+1 种基金the Technological Innovation Key Project of Hubei Province(2018AAA048)the support the“Chutian Scholar Program”of Hubei Province,China。
文摘Lead(Pb)^(0) and iodine(I)^(0) point defects generated during perovskite solar cell(PSC)fabrication and photoconversion form deep band energy levels as the carriers’recombination centers.These defects not only deteriorate device efficiency,but also facilitate chemical degradation with ion migration,resulting in restricted device lifetime.Herein,we present a novel type of phosphines as the point defects stabilizer for hybrid perovskite solar cells with enhanced performances.Three phosphines with varied side groups of tributyl,trioctyl and triphenyl are exampled as the dopants in perovskite films.The group dependent redox properties were observed in the perovskite film,dependent on their molecular weights and steric hinderances of phosphines.The partially oxidized tributyl phosphine(TBUP)with additional tributyl phosphine oxides(TBPO)is efficient in reduction of lead(Pb)^(0) and iodine(I)^(0) concentrations during the device fabrication and operation.The device with TBUP-TBPO pair showed enhanced power conversion efficiency(PCE)to 20.48% and maintain 91.7% of their initial PCEs after 500 h at 65℃ thermal annealing.Thus,this work presents an efficient route of utilize the phosphine species to reduce point defects in the perovskite film,which promoting further development of novel phosphorous additives with defects stabilization,interface passivation and encapsulation for low-cost solution processed PSCs.
基金This work was supported by National Research Foundation of Korea(NRF)grants funded by Ministry of Science and ICT(MSIT)(Nos.2021R1A2C3004420,2022M3J1A1085282,2020R1C1C1012256 and 2020R1C1C1003214)the NRF of Korea grant funded by the Korean Government(NRF-2019-Global Ph.D.Fellowship Program.
文摘Perovskite quantum dots(PQDs)have been considered promising and effective photovoltaic absorber due to their superior optoelectronic properties and inherent material merits combining perovskites and QDs.However,they exhibit low moisture stability at room humidity(20-30%)owing to many surface defect sites generated by inefficient ligand exchange process.These surface traps must be re-passivated to improve both charge transport ability and moisture stability.To address this issue,PQD-organic semiconductor hybrid solar cells with suitable electrical properties and functional groups might dramatically improve the charge extraction and defect passivation.Conventional organic semiconductors are typically low-dimensional(1D and 2D)and prone to excessive self-aggregation,which limits chemical interaction with PQDs.In this work,we designed a new 3D star-shaped semiconducting material(Star-TrCN)to enhance the compatibility with PQDs.The robust bonding with Star-TrCN and PQDs is demonstrated by theoretical modeling and experimental validation.The Star-TrCN-PQD hybrid films show improved cubic-phase stability of CsPbI_(3)-PQDs via reduced surface trap states and suppressed moisture penetration.As a result,the resultant devices not only achieve remarkable device stability over 1000 h at 20-30%relative humidity,but also boost power conversion efficiency up to 16.0%via forming a cascade energy band structure.
基金the financial support from the Taishan Scholar Project of Shandong Province (tsqn201812098)the National Natural Science Foundation of China (62275115)+5 种基金the Shandong Provincial Natural Science Foundation (ZR2020MF103)the Yantai City University Integration Development Project (2021XDRHXMXK26)the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciencesthe Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJB510038)the Carbon Neutrality Innovation Research Center in Ludong UniversityLarge Instruments Open Foundation of Nantong University。
文摘The emergence of perovskite solar cells(PSCs) has greatly promoted the progress of photovoltaic technologies.The rapid development of PSCs has been driven by the advances in optimizing perovskite films and their adjacent interfaces.However,the polycrystalline perovskite layers in most highly efficient PSCs still contain various defects that greatly limit photovoltaic performance and stability of the devices.Herein,we introduce a multifunctional additive ethylene diamine tetra methylene phosphonic sodium(EDTMPS) with multiple anchor points into the precursor of perovskite to improve the efficiency and stability of PSCs and provide in-situ protection of lead leakage.The addition of EDTMPS acts as a crystal growth controller and passivation agent for perovskite films,thereby slowing down the crystallization rate of the film and obtaining high-quality perovskite films.Our study also provides an insight into how the modifier modulate the interfacial energy level arrangement as well as affect transfer of charge carriers and their recombination under photoinduced excitation.As a result,the power conversion efficiency(PCE) of single subcell with a working area of 0.255 cm^(2) increases significantly from 20.03% to 23.37%.Moreover,we obtained a PCE of 19.16% for the 25 cm^(2) module.Importantly,the unencapsulated EDTMP-modified PSCs exhibit better operational and thermal stability,as well as in-situ absorption of leaked lead ions.
基金supported by the National Key Research and Development Program of China (2020YFA07150002018YFB1503100)the Suzhou Fangsheng FS-300 for research support。
文摘Although the efficiency of organic–inorganic hybrid halide perovskite solar cells has been improved rapidly, the intrinsic instability of perovskite materials restricts their commercial application. Here, an eco-friendly and low-cost organic polymer, cellulose acetate butyrate(CAB), was introduced to the grain boundaries and surfaces of perovskite, resulting in a high-quality and low-defect perovskite film with a nearly tenfold improvement in carrier lifetime. More importantly, the CAB-treated perovskite films have a well-matched energy level with the charge transport layers, thus suppressing carrier nonradiative recombination and carrier accumulation. As a result, the optimized CAB-based device achieved a champion efficiency of 21.5% compared to the control device(18.2%). Since the ester group in CAB bonds with Pb in perovskite, and the H and O in the hydroxyl group bond with the I and organic cations in perovskite,respectively, it will contribute to superior stability under heat, high humidity, and light soaking conditions. After aging under 35% humidity(relative humidity, RH) for 3300 h, the optimized device can still maintain more than 90% of the initial efficiency;it can also retain more than 90% of the initial efficiency after aging at 65 ℃, 65% RH, or light(AM 1.5G) for 500 h. This simple optimization strategy for perovskite stability could facilitate the commercial application of perovskite solar cells.
基金supported by the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(52173192)+1 种基金the Science and Technology Innovation Program of Hunan Province(2020RC4004)the Special Funding for the Construction of Innovative Provinces in Hunan Province(2020GK2024)。
文摘Power conversion efficiency(PCE) of perovskite solar cells(PSC) has been skyrocketed to certified 25.5% owing to their improved and tunable optoelectronic properties. Although, various strategies have been adopted to date regarding PCE and stability enhancement within PSC technology, certain instability factors(moisture, heat, light) are hindering their commercial placement. Recently, all-inorganic PSCs got hype in the photovoltaic research community after they attained PCE > 20% and due to their significant endurance against heat and light mishmashes, but there only left moisture sensitivity as the only roadblock for their industrial integration. Here, we review the recent progress of additive inclusion into allinorganic(CsPbX_(3)) PSCs to stabilize their intrinsic structure and to withstand the performance limiting factors. We start with the detailed description of chemical instability of different perovskite compositions, phase segregation, and how organic molecules and dyes help to repair the structural defects to improve the overall PCE and stability of PSCs. Moisture endurance as a result of chemical passivation through organic additives, low-dimensional inorganic PSCs to enhance device stability and scalable fabrication of CsPbX_(3) PSCs are also reviewed. The challenges of module degradation and design implications with proposed strategies and outlook are interpreted in the ending phrases of this review.
基金the National Natural Science Foundation of China(22065038)the Key Project of Natural Science Foundation of Yunnan(KC10110419)+4 种基金the High-Level Talents Introduction in Yunnan Province(C619300A010)the Fund for Excellent Young Scholars of Yunnan(K264202006820)the Program for Excellent Young Talents of Yunnan University and Major Science(C176220200)the International Joint Research Center for Advanced Energy Materials of Yunnan Province(202003AE140001)the Technology Project of Precious Metal Materials Genetic Engineering in Yunnan Province(No.2019Z E001-1202002AB080001)for financial support。
文摘Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and polymers,yet the use of organic metal complexes in PSCs applications remains less explored.To date,most of reported HTMs require additional chemical additives(e.g.Li-TFSI,t-TBP)towards high performance,however,the introduction of additives decrease the PSCs device stability.Herein,an organic metal complex(Ni-TPA)is first developed as a dopant-free HTM applied in PSCs for its facile synthesis and efficient hole extract/transfer ability.Consequently,the dopant-free Ni-TPAbased device achieves a champion efficiency of 17.89%,which is superior to that of pristine Spiro-OMeTAD(14.25%).Furthermore,we introduce a double HTM layer with a graded energy bandgap containing a Ni-TPA layer and a CuSCN layer into PSCs,the non-encapsulated PSCs based on the Ni-TPA/CuSCN layers affords impressive efficiency up to 20.39%and maintains 96%of the initial PCE after 1000 h at a relative humidity around 40%.The results have demonstrated that metal organic complexes represent a great promise for designing new dopant-free HTMs towards highly stable PSCs.
基金funding from the Italian Ministry of Economic Development(MISE)in the framework of the Operating Agreement with ENEA for Research on the Electric Systemfrom the Italian Ministry of University and Research(MUR)in the framework of“BEST4U”Project,PON R&I 2014-2020.L.V.,M.S.+2 种基金A.D.C.were supported by the European Union's Horizon 2020 Framework Program for funding Research and Innovation under grant agreement no.764047(ESPResSo)no.691664(UNIQUE,Cofund ERANET Action,MUR GA 775970)no.826013(IMPRESSIVE).C.C.and A.S.acknowledge MIUR Grant—Department of Excellence 2018-2022 and the European Union's Horizon 2020 Framework Program for funding Research and Innovation under grant agreement no.764047(ESPResSo).
文摘During the last decade,perovskite solar technologies underwent an impressive development,with power conversion efficiencies reaching 25.5%for single-junction devices and 29.8%for Silicon-Perovskite tandem configurations.Even though research mainly focused on improving the efficiency of perovskite photovoltaics(PV),stability and scalability remain fundamental aspects of a mature photovoltaics technology.For n-i-p structure perovskite solar cells,using poly-triaryl(amine)(PTAA)as hole transport layer(HTL)allowed to achieve marked improvements in device stability compared with other common hole conductors.For p-i-n structure,poly-triaryl(amine)is also routinely used as dopant-free hole transport layer,but problems in perovskite film growth,and its limited resistance to stress and imperfect batch-to-batch reproducibility,hamper its use for device upscaling.Following previous computational investigations,in this work,we report the synthesis of two small-molecule organic hole transport layers(BPT-1,2),aiming to solve the above-mentioned issues and allow upscale to the module level.By using BPT-1 and methylammonium-free perovskite,max.Power conversion efficiencies of 17.26%and 15.42%on a small area(0.09 cm^(2))and mini-module size(2.25 cm^(2)),respectively,were obtained,with a better reproducibility than with poly-triaryl(amine).Moreover,BPT-1 was demonstrated to yield more stable devices compared with poly-triaryl(amine)under ISOS-D1,T1,and L1 accelerated life-test protocols,reaching maximum T_(90)values>1000 h on all tests.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.2022ZYGXZR099)Pazhou Lab(No.PZL2022KF0010).
文摘With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the practical application requirements of BIPVs,in addition to the evaluation indicator of power conversion efficiency(PCE),other key performance indicators such as heat-insulating ability,average visible light transmittance(AVT),color properties,and integrability are equally important.The traditional Si-based photovoltaic technology is typically limited by its opaque properties for application scenarios where transparency is required.The emerging PV technologies,such as organic and perovskite photovoltaics are promising candidates for BIPV applications,owing to their advantages such as high PCE,high AVT,and tunable properties.At present,the PCE of semitransparent perovskite solar cells(ST-PSCs)has attained 14%with AVT of 22–25%;for semitransparent organic solar cells(ST-OSCs),the PCE reached 13%with AVT of almost 40%.In this review article,we summarize recent advances in material selection,optical engineering,and device architecture design for high-performance semitransparent emerging PV devices,and discuss the application of optical modeling,as well as the challenges of commercializing these semitransparent solar cells for building-integrated applications.
基金supported by the Key Project of the Nature Science Foundation of Tianjin(22JCZDJC00120)the 111 Project(B16027)。
文摘Monolithic perovskite/organic tandem solar cells(TSCs)have emerged as promising thin film solar cells.It is recognized that interconnect junction plays a pivotal role in tandem devices.Consequently,wide bandgap Cs_(0.25)FA_(0.75)Pb(I_(0.6)Br_(0.4))_(3)perovskite top-cell and narrow bandgap PM6:Y6:PC_(61)BM ternary organic bottom-cell were integrated in this study with several kinds of thin metal interconnect layers,which provides feasibility to elaborately manipulate light transmission and carrier tunneling process in interconnect junction.It is confirmed that,in comparison with Au,employing an Ag interconnect layer elevates integrated transmittance of light in longer wavelength regions,mainly because of the alleviated screening effect with a lower free electron concentration,which offers sufficient light harvest for the bottom-cell.Meanwhile,established energy barriers with moderate height afford convenient extraction and recombination for both holes and electrons.Hence,the performance of TSCs is promoted substantially.Moreover,an innovative Ag/Au double interconnect layer is proposed accordingly,which can preserve exceptional conductivity and light transmission and further reduce barrier height,especially for hole tunneling,by optimizing the band alignment between the interconnect layer and bottom-cell.Resultantly,the monolithic perovskite/organic TSC with a striking efficiency of 23.26% is achieved.In a word,this study can pave a general approach toward high-performance TSCs integration.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB4200302)the National Natural Science Foundation of China(Grant Nos.52325307,52203233,22075194,and 52273188)+2 种基金Department of Science and Technology of Jiangsu Province(No.BE2022023)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Collaborative Innovation Center of Suzhou Nano Science and Technology,and the Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function,Soochow University,Undergraduate Training Programfor Innovation and Entrepreneurship,Soochow University(No.202310285036Z).
文摘Monolithic perovskite/organic tandem solar cells(TsCs)have gained significant attention due to their easy device integration and the potential to surpass the Shockley-Queisser limit of single-junction solar cells.However,the surfaces of wide-bandgap perovskite films are densely populated with defects,leading to severe non-radiative recombination and energy loss.As a consequence,the power conversion efficiency(PCE)of perovskite/organic TSCs lags behind that of other TSC counterparts.To address these issues,we designed a functional ammonium salt,4-(2-hydroxyethyl)piperazin-1-ium iodide(Pzol),comprising a piperazine iodide and a terminated hydroxyl group,which was applied for post-treating the perovskite surface.Our findings reveal that Pzol reacts with and consumes residual PbX_(2)(X:I or Br)to form a 2D perovskite component,thereby eliminating Pb^(0)defects,while the terminated hydroxyl group in PZOI can also passivate uncoordinated Pb^(2+).Consequently,the shallow/deep-level defect densities of the 2D/3D perovskite film were significantly reduced,leading to an enhanced PCE of single-junction 2D/3D wide-bandgap perovskite solar cells to 18.18% with a reduced energy loss of 40 mev.Importantly,the corresponding perovskite/organic TSCs achieved a remarkable PCE of 24.05% with enhanced operational stability(T_(90)~500h).
基金supported by the National Natural Science Foundation of China (grant nos.22375070 and 22288101)the Jilin Province Science and Technology Development Plan (grant nos.20220101048JC and 20210101112JC)the 111 Project the Ministry of Education of China (grant no.B17020).
文摘Donor-Acceptor(D-A)alignment is considered a productive strategy to improve the charge separation efficiency of covalent organic frameworks(COFs)and enhance the charge-transfer yield(CTY)of COFs.Moreover,organic molecules containing heteroatoms can produce coordination interaction with PbI2 of perovskite precursor to affect the crystallization process,thereby impeding the decomposition and improving the stability of perovskite materials.Herein,a thiazolo[5,4-d]thiazole(TZ)-based D-A type COF_(TPDA-TZDA) was designed and synthesized from N,N,N′,N′-tetrakis(4-aminophenyl)-1,4-benzenediamine(TPDA)and 4,4′-(thiazolo[5,4-d]thiazole-2,5-diyl)dibenzaldehyde(TZDA).Upon incorporation into the FAPbI3 layer,COF_(TPDA-TZDA) not only restrained the perovskite defects and enhanced the grain size of perovskite films through the coordination effect of the N atoms of TZDA but also ameliorated the charge transport within the perovskite film,which was the benefit of the D-A structure of COF_(TPDA-TZDA).As a result,incorporation of COF_(TPDA-TZDA) into the perovskite solar cells(PSCs)led to a remarkable power conversion efficiency(PCE)of up to 23.51%.Furthermore,even after being stored in high relative humidity(RH≈60%)for 480 h,these PSCs maintained over 90.55%of their original PCE.This work sets the foundation for the development of highly efficient and stable PSCs by utilizing TZ-based D-A type COFs.
基金financially supported by the National Basic Research Program of China,Fundamental Studies of Perovskite Solar Cells(Grant 2015CB932200)the Natural Science Foundation of China(Grant 51035063)+2 种基金Natural Science Foundation of Jiangsu Province,China(Grants 55135039 and 55135040)Jiangsu Specially-Appointed Professor program(Grant 54907024)Startup from Nanjing Tech University(Grants 3983500160,3983500151,and 44235022)
文摘Low dimensional perovskites have recently attracted much attention due to their vertical growth of crys- talline orientation, excellent film morphology, and long-term humidity, light, and heat stability, How- ever, low dimensional perovskites suffer fl'om low power conversion efficiency (PCE) with respect to their three dimensional analogues. Therefore, it is imperative to find excellent low-dimensional perovskite materials for improving the PCE. Previous work has demonstrated that bulkier organic molecules, e,g., C6Hs(CH2)2NH3+ (PEA+), CH3(CH2)3NH3+(n-BAT, iso-BA+), C2H4NH3 +, and polyethylenimine cations (PEI+), play an important role in the formation of low-dimensional perovskites. In this review, we review the recent development of low dimensional perovskites for solar cells application in terms of film preparation, photophysics, and stability of perovskites, as well as the related device structure and physics. We have also discussed the future development of low-dimensional perovskites from materials design, fabri- cation processes, and device structure.
基金financially supported by the Guangdong Major Project of Basic and Applied Basic Research(2019B030302007)the Ministry of Science and Technology(2017YFA0206600,2019YFA0705900)+6 种基金the Natural Science Foundation of China(51973063,91733302 and 51803060)Guangdong Basic and Applied Basic Research Foundation for Distinguished Young Scholar(2021B1515020028)the Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates(South China University of Technology)(2019B030301003)the Science and Technology Program of Guangzhou,China(201904010147)the funding by State Key Lab of Luminescent Materials and Devices,South China University of Technologythe Fellowship of China Postdoctoral Science Foundation(2020M682703)the National Natural Science Foundation of China(52003090)。
文摘As one of the core parts of two-terminal(2 T) monolithic tandem photovoltaics, the interconnecting layers(ICLs) play a critical role in modulating the carrier transport and recombination between the sub-cells,and thus influencing the tandem device performance. Here, for the first time, the relationship between ICLs architecture and 2 T monolithic perovskite/organic tandem device performance has been studied by investigating the change of ICLs composition layer thickness on the ICLs optical and electrical properties, sub-cells EQE properties, and tandem device J-V properties. It is revealed that the ability of ICLs on modulating the sub-cells carrier balance properties is strongly associated with its composited layers thickness, and the tandem device carrier balance properties can be reflected by the relative EQE intensity between the sub-cells. Finally, with a deep understanding of the mechanisms, rational design of ICLs can be made to benefit the tandem device development. Based on the optimized ICL a high PCE of 20.03% is achieved.