The efficient integration of satellite and terrestrial networks has become an important component for 6 G wireless architectures to provide highly reliable and secure connectivity over a wide geographical area.As the ...The efficient integration of satellite and terrestrial networks has become an important component for 6 G wireless architectures to provide highly reliable and secure connectivity over a wide geographical area.As the satellite and cellular networks are developed separately these years,the integrated network should synergize the communication,storage,computation capabilities of both sides towards an intelligent system more than mere consideration of coexistence.This has motivated us to develop double-edge intelligent integrated satellite and terrestrial networks(DILIGENT).Leveraging the boost development of multi-access edge computing(MEC)technology and artificial intelligence(AI),the framework is entitled with the systematic learning and adaptive network management of satellite and cellular networks.In this article,we provide a brief review of the state-of-art contributions from the perspective of academic research and standardization.Then we present the overall design of the proposed DILIGENT architecture,where the advantages are discussed and summarized.Strategies of task offloading,content caching and distribution are presented.Numerical results show that the proposed network architecture outperforms the existing integrated networks.展开更多
Nowadays both satellite and terrestrial networks are expanding rapidly to meet the ever-increasing demands for higher throughput,lower latency,and wider coverage.However,spectrum scarcity places obstacles in the susta...Nowadays both satellite and terrestrial networks are expanding rapidly to meet the ever-increasing demands for higher throughput,lower latency,and wider coverage.However,spectrum scarcity places obstacles in the sustainable development.To accommodate the expanding network within a limited spectrum,spectrum sharing is deemed as a promising candidate.Particularly,cognitive radio(CR)has been proposed in the literature to allow satellite and terrestrial networks to share their spectrum dynamically.However,the existing CR-based schemes are found to be impractical and inefficient because they neglect the difficulty in obtaining the accurate and timely environment perception in satellite communications and only focus on link-level coexistence with limited interoperability.In this paper,we propose an intelligent spectrum management framework based on software defined network(SDN)and artificial intelligence(AI).Specifically,SDN transforms the heterogenous satellite and terrestrial networks into an integrated satellite and terrestrial network(ISTN)with reconfigurability and interoperability.AI is further used to make predictive environment perception and to configure the network for optimal resource allocation.Briefly,the proposed framework provides a new paradigm to integrate and exploit the spectrum of satellite and terrestrial networks.展开更多
Integrated satellite and terrestrial networks can be used to solve communication problems in natural disasters,forestry monitoring and control,and military communication.Unlike traditional communication methods,integr...Integrated satellite and terrestrial networks can be used to solve communication problems in natural disasters,forestry monitoring and control,and military communication.Unlike traditional communication methods,integrated networks are effective solutions because of their advantages in communication,remote sensing,monitoring,navigation,and all-weather seamless coverage.Monitoring,urban management,and other aspects will also have a wide range of applications.This study first builds an integrated network overlay model,and divides the satellite network into two categories:terrestrial network end users and satellite network end users.The energy efficiency,throughput,and signal-to-noise ratio(SINR)are deduced and analyzed.In this paper,we discuss the influence of various factors,such as transmit power,number of users,size of the protected area,and terminal position,on energy efficiency and SINR.A satellite-sharing scheme with a combination of the user location and an exclusion zone with high energy efficiency and anti-jamming capability is proposed to provide better communication quality for end users in integrated satellite and terrestrial networks.展开更多
基金supportedin part by the National Science Foundation of China(NSFC)under Grant 61631005,Grant 61771065,Grant 61901048in part by the Zhijiang Laboratory Open Project Fund 2020LCOAB01in part by the Beijing Municipal Science and Technology Commission Research under Project Z181100003218015。
文摘The efficient integration of satellite and terrestrial networks has become an important component for 6 G wireless architectures to provide highly reliable and secure connectivity over a wide geographical area.As the satellite and cellular networks are developed separately these years,the integrated network should synergize the communication,storage,computation capabilities of both sides towards an intelligent system more than mere consideration of coexistence.This has motivated us to develop double-edge intelligent integrated satellite and terrestrial networks(DILIGENT).Leveraging the boost development of multi-access edge computing(MEC)technology and artificial intelligence(AI),the framework is entitled with the systematic learning and adaptive network management of satellite and cellular networks.In this article,we provide a brief review of the state-of-art contributions from the perspective of academic research and standardization.Then we present the overall design of the proposed DILIGENT architecture,where the advantages are discussed and summarized.Strategies of task offloading,content caching and distribution are presented.Numerical results show that the proposed network architecture outperforms the existing integrated networks.
基金National Natural Science Foundation of China(61631005)National Natural Science Foundation of China(U1801261)+3 种基金National Natural Science Foundation of China(61571100)National Key R&D Program of China(2018YFB1801105)Central Universities(ZYGX2019Z022)Programme of Introducing Talents of Discipline to Universities(B20064)。
文摘Nowadays both satellite and terrestrial networks are expanding rapidly to meet the ever-increasing demands for higher throughput,lower latency,and wider coverage.However,spectrum scarcity places obstacles in the sustainable development.To accommodate the expanding network within a limited spectrum,spectrum sharing is deemed as a promising candidate.Particularly,cognitive radio(CR)has been proposed in the literature to allow satellite and terrestrial networks to share their spectrum dynamically.However,the existing CR-based schemes are found to be impractical and inefficient because they neglect the difficulty in obtaining the accurate and timely environment perception in satellite communications and only focus on link-level coexistence with limited interoperability.In this paper,we propose an intelligent spectrum management framework based on software defined network(SDN)and artificial intelligence(AI).Specifically,SDN transforms the heterogenous satellite and terrestrial networks into an integrated satellite and terrestrial network(ISTN)with reconfigurability and interoperability.AI is further used to make predictive environment perception and to configure the network for optimal resource allocation.Briefly,the proposed framework provides a new paradigm to integrate and exploit the spectrum of satellite and terrestrial networks.
基金This work is supported by the National Natural Science Foundation of China(Nos.61671183,61771163,91438205).
文摘Integrated satellite and terrestrial networks can be used to solve communication problems in natural disasters,forestry monitoring and control,and military communication.Unlike traditional communication methods,integrated networks are effective solutions because of their advantages in communication,remote sensing,monitoring,navigation,and all-weather seamless coverage.Monitoring,urban management,and other aspects will also have a wide range of applications.This study first builds an integrated network overlay model,and divides the satellite network into two categories:terrestrial network end users and satellite network end users.The energy efficiency,throughput,and signal-to-noise ratio(SINR)are deduced and analyzed.In this paper,we discuss the influence of various factors,such as transmit power,number of users,size of the protected area,and terminal position,on energy efficiency and SINR.A satellite-sharing scheme with a combination of the user location and an exclusion zone with high energy efficiency and anti-jamming capability is proposed to provide better communication quality for end users in integrated satellite and terrestrial networks.