This paper firstly reviews the recent development in power system protection and control, with special attention paid to the wide-area and integrated protection, in order to look into future development of integration...This paper firstly reviews the recent development in power system protection and control, with special attention paid to the wide-area and integrated protection, in order to look into future development of integration of protection and control for smart grids. This paper mainly reports on the development of integrated wide area protection and control for power systems. The concept of integrated wide area protection and control is introduced, in which a hierarchical protection and control system provides the protection and control of wide area or regional power substations/ plants and their associated power network. The system is mainly divided into three levels, the local, the substation/plant and the wide area/regional protection and control. The integrated functions at each level are described in details with an aim to develop an optimal coordination mechanism between the levels. One of the core elements in the system is the synchronised wide area communication network between the substations and the protection and control system, in which latest communication technology is employed. Another important player in the system is the wide area synchronized protection and control information platform, which not only enables the fusion three line of defence for power system protection and control, but also provides a perfect tool for the application of cloud computing to substations and power networks.展开更多
The microgrid has shown to be a promising solution for the integration and management of intermittent renewable energy generation.This paper looks at critical issues surrounding microgrid control and protection.It pro...The microgrid has shown to be a promising solution for the integration and management of intermittent renewable energy generation.This paper looks at critical issues surrounding microgrid control and protection.It proposes an integrated control and protection system with a hierarchical coordination control strategy consisting of a stand-alone operation mode,a grid-connected operation mode,and transitions between these two modes for a microgrid.To enhance the fault ride-through capability of the system,a comprehensive three-layer hierarchical protection system is also proposed,which fully adopts different protection schemes,such as relay protection,a hybrid energy storage system(HESS)regulation,and an emergency control.The effectiveness,feasibility,and practicality of the proposed systems are validated on a practical photovoltaic(PV)microgrid.This study is expected to provide some theoretical guidance and engineering construction experience for microgrids in general.展开更多
This paper analyzes the fundamental frequency impedance presents a novel transmission line pilot protection scheme characteristic of a thyristor controlled series capacitor (TCSC) and based on fault component integr...This paper analyzes the fundamental frequency impedance presents a novel transmission line pilot protection scheme characteristic of a thyristor controlled series capacitor (TCSC) and based on fault component integrated impedance (FCII) calculated for a transmission line with TCSC and controllable shunt reactor (CSR). The FCII is defined as the ratio of the sum of the fault component voltage phasors of a transmission line with TCSC and CSR to the sum of the fault component current phasors where all the phasors are determined at both line's terminals. It can be used to distinguish internal faults occurring on the line from external ones. If the fault is an external one the FCII reflects the line's capacitive impedance and has large value. If the fault is an internal one on the line the FCII reflects the impedance of the equivalent system and the line and is relatively small. The new pilot protection scheme can be easily set and has the fault phase selection ability and also it is not affected by the capacitive current and the fault transition resistance. It is not sensitive to compensation level and dynamics of TCSC and CSR. The effectiveness of the new scheme is validated against data obtained in ATP simulations and Northwest China 750 kV Project.展开更多
Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cann...Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cannot be overlooked during large-scale applications.This paper proposes an innovative active protection and cooling integrated battery module using smart materials,magneto-sensitive shear thickening fluid(MSTF),which is specifically designed to address safety threats posed by lithium-ion batteries(LIBs)exposed to harsh mechanical and environmental conditions.The theoretical framework introduces a novel approach for harnessing the smoothed-particle hydrodynamics(SPH)methodology that incorporates the intricate interplay of non-Newtonian fluid behavior,capturing the fluid-structure coupling inherent to the MSTF.This approach is further advanced by adopting an enhanced Herschel-Bulkley(H-B)model to encapsulate the intricate rheology of the MSTF under the influence of the magnetorheological effect(MRE)and shear thickening(ST)behavior.Numerical simulation results show that in the case of cooling,the MSTF is an effective cooling medium for rapidly reducing the temperature.In terms of mechanical abuse,the MSTF solidifies through actively applying the magnetic field during mechanical compression and impact within the battery module,resulting in 66%and 61.7%reductions in the maximum stress within the battery jellyroll,and 31.1%and 23%reductions in the reaction force,respectively.This mechanism effectively lowers the risk of short-circuit failure.The groundbreaking concepts unveiled in this paper for active protection battery modules are anticipated to be a valuable technological breakthrough in the areas of EV safety and lightweight/integrated design.展开更多
文摘This paper firstly reviews the recent development in power system protection and control, with special attention paid to the wide-area and integrated protection, in order to look into future development of integration of protection and control for smart grids. This paper mainly reports on the development of integrated wide area protection and control for power systems. The concept of integrated wide area protection and control is introduced, in which a hierarchical protection and control system provides the protection and control of wide area or regional power substations/ plants and their associated power network. The system is mainly divided into three levels, the local, the substation/plant and the wide area/regional protection and control. The integrated functions at each level are described in details with an aim to develop an optimal coordination mechanism between the levels. One of the core elements in the system is the synchronised wide area communication network between the substations and the protection and control system, in which latest communication technology is employed. Another important player in the system is the wide area synchronized protection and control information platform, which not only enables the fusion three line of defence for power system protection and control, but also provides a perfect tool for the application of cloud computing to substations and power networks.
基金supported by the National High Technology Research and Development of China 863 Program under Grant 2012AAOS0204,Chinathe National Natural Science Foundation of China under Grant S132100S,S1207076.
文摘The microgrid has shown to be a promising solution for the integration and management of intermittent renewable energy generation.This paper looks at critical issues surrounding microgrid control and protection.It proposes an integrated control and protection system with a hierarchical coordination control strategy consisting of a stand-alone operation mode,a grid-connected operation mode,and transitions between these two modes for a microgrid.To enhance the fault ride-through capability of the system,a comprehensive three-layer hierarchical protection system is also proposed,which fully adopts different protection schemes,such as relay protection,a hybrid energy storage system(HESS)regulation,and an emergency control.The effectiveness,feasibility,and practicality of the proposed systems are validated on a practical photovoltaic(PV)microgrid.This study is expected to provide some theoretical guidance and engineering construction experience for microgrids in general.
基金supported by the National Natural Science Foundation of China (Grant Nos.50877061 and 51037005)
文摘This paper analyzes the fundamental frequency impedance presents a novel transmission line pilot protection scheme characteristic of a thyristor controlled series capacitor (TCSC) and based on fault component integrated impedance (FCII) calculated for a transmission line with TCSC and controllable shunt reactor (CSR). The FCII is defined as the ratio of the sum of the fault component voltage phasors of a transmission line with TCSC and CSR to the sum of the fault component current phasors where all the phasors are determined at both line's terminals. It can be used to distinguish internal faults occurring on the line from external ones. If the fault is an external one the FCII reflects the line's capacitive impedance and has large value. If the fault is an internal one on the line the FCII reflects the impedance of the equivalent system and the line and is relatively small. The new pilot protection scheme can be easily set and has the fault phase selection ability and also it is not affected by the capacitive current and the fault transition resistance. It is not sensitive to compensation level and dynamics of TCSC and CSR. The effectiveness of the new scheme is validated against data obtained in ATP simulations and Northwest China 750 kV Project.
基金Project supported by the National Natural Science Foundation of China(Nos.12072183 and11872236)the Key Research Project of Zhejiang Laboratory(No.2021PE0AC02)。
文摘Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cannot be overlooked during large-scale applications.This paper proposes an innovative active protection and cooling integrated battery module using smart materials,magneto-sensitive shear thickening fluid(MSTF),which is specifically designed to address safety threats posed by lithium-ion batteries(LIBs)exposed to harsh mechanical and environmental conditions.The theoretical framework introduces a novel approach for harnessing the smoothed-particle hydrodynamics(SPH)methodology that incorporates the intricate interplay of non-Newtonian fluid behavior,capturing the fluid-structure coupling inherent to the MSTF.This approach is further advanced by adopting an enhanced Herschel-Bulkley(H-B)model to encapsulate the intricate rheology of the MSTF under the influence of the magnetorheological effect(MRE)and shear thickening(ST)behavior.Numerical simulation results show that in the case of cooling,the MSTF is an effective cooling medium for rapidly reducing the temperature.In terms of mechanical abuse,the MSTF solidifies through actively applying the magnetic field during mechanical compression and impact within the battery module,resulting in 66%and 61.7%reductions in the maximum stress within the battery jellyroll,and 31.1%and 23%reductions in the reaction force,respectively.This mechanism effectively lowers the risk of short-circuit failure.The groundbreaking concepts unveiled in this paper for active protection battery modules are anticipated to be a valuable technological breakthrough in the areas of EV safety and lightweight/integrated design.