The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivi...The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance.展开更多
The lack of adequate and modern transport infrastructures makes the cost of transport in Africa higher than the rest of the world. Most of the transport infrastructures that exist were constructed during the colonial ...The lack of adequate and modern transport infrastructures makes the cost of transport in Africa higher than the rest of the world. Most of the transport infrastructures that exist were constructed during the colonial era which makes inter-regional connectivity difficult. The African Union in collaboration with other organization has committed to bridge the transport gap in Africa but still, face some challenges. This paper discusses the main issues that contribute for the weak nature of transportation in Sub-Saharan Africa with regards to the main transport modes and seeks to establish the possibility of sustainable intermodal transport through the integration of the different transport modes. Some policy reforms and other bilateral agreements such as deregulating the transport markets in West and Central Africa have been suggested to facilitate the development of an effective and efficient transport network in the Sub-Saharan African region.展开更多
From the perspective of domestic market integration,this paper systematically examines the impact of transportation infrastructure conditions on excess sensitivity of household consumption based on the China Family Pa...From the perspective of domestic market integration,this paper systematically examines the impact of transportation infrastructure conditions on excess sensitivity of household consumption based on the China Family Panel Survey(CFPS)and multi-level matching panel data of transportation network density.The results show that the fast-growing development of the transportation infrastructure network has a significant alleviating effect on excess sensitivity of household consumption along the route,and the conclusion is still robust after the use of the multi-dimensional instrumental variable method and a series of robustness tests.According to the heterogeneity tests,in terms of the alleviating effect of transportation infrastructure,railroads rank the first,highways the second,substandard roads the third,waterways the fourth,and roads of other grades at the bottom.The mechanism test reveals that the improvement of domestic market integration is an important channel for transportation infrastructure to alleviate excess sensitivity of household consumption.This paper confirms that improving the transportation infrustructure system is conducive to the construction of a unified national market,alleviating excess sensitivity of consumption and stimulating consumption.This paper provides suggestions for implementing the strategy of boosting domestic demand,and helps the government understand households'consumption decision-making from a broader perspective.This study also provides a theoretical basis for the economic spillover effect of transportation infrastructure.展开更多
To improve the resilience of distribution networks(DNs),a multi-stage dynamic recovery strategy is proposed in this paper,which is designed for post-disaster DN considering an integrated energy system(IES)and transpor...To improve the resilience of distribution networks(DNs),a multi-stage dynamic recovery strategy is proposed in this paper,which is designed for post-disaster DN considering an integrated energy system(IES)and transportation network(TN).First,the emergency response quickly increases the output of gas turbines(GTs)in the natural gas network(NGN),and responsively reconfigures the DN in microgrids,to maximize the amount of loads to be restored.The single-commodity flow model is adopted to construct spanning tree constraints.Then,in the second stage of energy storage recovery,mobile energy storage systems(MESSs)are deployed to cover the shortages of power demands,i.e.,to further restore the loads after evaluating the load recovery situation.The Floyd algorithm based dynamic traffic assignment(DTA)is selected to obtain the optimal path of the MESSs.In the third stage,the outputs of various post-disaster recovery measures are adjusted to achieve an economically optimized operation.Case studies demonstrate the effectiveness of the proposed dynamic post-disaster recovery strategy.展开更多
The hybrid electric propulsion system(HEPS)holds clear potential to support the goal of sustainability in the automobile and aviation industry.As an important part of the three-dimensional transportation network,vehic...The hybrid electric propulsion system(HEPS)holds clear potential to support the goal of sustainability in the automobile and aviation industry.As an important part of the three-dimensional transportation network,vehicles and aircraft using HEPSs have the advantages of high fuel economy,low emission,and low noise.To fulfill these advantages,the design of their energy management strategies(EMSs)is essential.This paper presents an in-depth review of EMSs for hybrid electric vehicles(HEVs)and hybrid electric aircraft.First,in view of the main challenges of current EMSs of HEVs,the referenced research is reviewed according to the solutions facing real-time implementation problems,variable driving conditions adaptability problems,and multi-objective optimization problems,respectively.Second,the existing research on the EMSs for hybrid electric aircraft is summarized according to the hybrid electric propulsion architectures.In addition,with the advance in propulsion technology and mechanical manufacturing in recent years,flying cars have gradually become a reality,further enriching the composition of the three-dimensional transportation network.And EMSs also play an essential role in the efficient operation of flying cars driven by HEPSs.Therefore,in the last part of this paper,the development status of flying cars and their future prospects are elaborated.By comprehensively summarizing the EMSs of HEPS for vehicles and aircraft,this review aims to provide guidance for the research on the EMSs for flying cars driven by HEPS and serve as the basis for knowledge transfer of relevant researchers.展开更多
A systematic approach is proposed to the theme of safety,reliability and global quality of complex networks(material and immaterial)by means of special mathematical tools that allow an adequate geometric characterizat...A systematic approach is proposed to the theme of safety,reliability and global quality of complex networks(material and immaterial)by means of special mathematical tools that allow an adequate geometric characterization and study of the operation,even in the presence of multiple obstacles along the path.To that end,applying the theory of graphs to the problem under study and using a special mathematical model based on stochastic geometry,in this article we consider some regular lattices in which it is possible to schematize the elements of the network,with the fundamental cell with six,eight or 2(n+2)obstacles,calculating the probability of Laplace.In this way it is possible to measure the“degree of impedance”exerted by the anomalies along the network by the obstacles examined.The method can be extended to other regular and/or irregular geometric figures,whose union together constitutes the examined network,allowing to optimize the functioning of the complex system considered.展开更多
文摘The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance.
文摘The lack of adequate and modern transport infrastructures makes the cost of transport in Africa higher than the rest of the world. Most of the transport infrastructures that exist were constructed during the colonial era which makes inter-regional connectivity difficult. The African Union in collaboration with other organization has committed to bridge the transport gap in Africa but still, face some challenges. This paper discusses the main issues that contribute for the weak nature of transportation in Sub-Saharan Africa with regards to the main transport modes and seeks to establish the possibility of sustainable intermodal transport through the integration of the different transport modes. Some policy reforms and other bilateral agreements such as deregulating the transport markets in West and Central Africa have been suggested to facilitate the development of an effective and efficient transport network in the Sub-Saharan African region.
文摘From the perspective of domestic market integration,this paper systematically examines the impact of transportation infrastructure conditions on excess sensitivity of household consumption based on the China Family Panel Survey(CFPS)and multi-level matching panel data of transportation network density.The results show that the fast-growing development of the transportation infrastructure network has a significant alleviating effect on excess sensitivity of household consumption along the route,and the conclusion is still robust after the use of the multi-dimensional instrumental variable method and a series of robustness tests.According to the heterogeneity tests,in terms of the alleviating effect of transportation infrastructure,railroads rank the first,highways the second,substandard roads the third,waterways the fourth,and roads of other grades at the bottom.The mechanism test reveals that the improvement of domestic market integration is an important channel for transportation infrastructure to alleviate excess sensitivity of household consumption.This paper confirms that improving the transportation infrustructure system is conducive to the construction of a unified national market,alleviating excess sensitivity of consumption and stimulating consumption.This paper provides suggestions for implementing the strategy of boosting domestic demand,and helps the government understand households'consumption decision-making from a broader perspective.This study also provides a theoretical basis for the economic spillover effect of transportation infrastructure.
基金supported by the Science and Technology Project of the State Grid Corporation of China“Research on resilience technology and application foundation of intelligent distribution network based on integrated energy system”(No.52060019001H).
文摘To improve the resilience of distribution networks(DNs),a multi-stage dynamic recovery strategy is proposed in this paper,which is designed for post-disaster DN considering an integrated energy system(IES)and transportation network(TN).First,the emergency response quickly increases the output of gas turbines(GTs)in the natural gas network(NGN),and responsively reconfigures the DN in microgrids,to maximize the amount of loads to be restored.The single-commodity flow model is adopted to construct spanning tree constraints.Then,in the second stage of energy storage recovery,mobile energy storage systems(MESSs)are deployed to cover the shortages of power demands,i.e.,to further restore the loads after evaluating the load recovery situation.The Floyd algorithm based dynamic traffic assignment(DTA)is selected to obtain the optimal path of the MESSs.In the third stage,the outputs of various post-disaster recovery measures are adjusted to achieve an economically optimized operation.Case studies demonstrate the effectiveness of the proposed dynamic post-disaster recovery strategy.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51975048,52102449).
文摘The hybrid electric propulsion system(HEPS)holds clear potential to support the goal of sustainability in the automobile and aviation industry.As an important part of the three-dimensional transportation network,vehicles and aircraft using HEPSs have the advantages of high fuel economy,low emission,and low noise.To fulfill these advantages,the design of their energy management strategies(EMSs)is essential.This paper presents an in-depth review of EMSs for hybrid electric vehicles(HEVs)and hybrid electric aircraft.First,in view of the main challenges of current EMSs of HEVs,the referenced research is reviewed according to the solutions facing real-time implementation problems,variable driving conditions adaptability problems,and multi-objective optimization problems,respectively.Second,the existing research on the EMSs for hybrid electric aircraft is summarized according to the hybrid electric propulsion architectures.In addition,with the advance in propulsion technology and mechanical manufacturing in recent years,flying cars have gradually become a reality,further enriching the composition of the three-dimensional transportation network.And EMSs also play an essential role in the efficient operation of flying cars driven by HEPSs.Therefore,in the last part of this paper,the development status of flying cars and their future prospects are elaborated.By comprehensively summarizing the EMSs of HEPS for vehicles and aircraft,this review aims to provide guidance for the research on the EMSs for flying cars driven by HEPS and serve as the basis for knowledge transfer of relevant researchers.
文摘A systematic approach is proposed to the theme of safety,reliability and global quality of complex networks(material and immaterial)by means of special mathematical tools that allow an adequate geometric characterization and study of the operation,even in the presence of multiple obstacles along the path.To that end,applying the theory of graphs to the problem under study and using a special mathematical model based on stochastic geometry,in this article we consider some regular lattices in which it is possible to schematize the elements of the network,with the fundamental cell with six,eight or 2(n+2)obstacles,calculating the probability of Laplace.In this way it is possible to measure the“degree of impedance”exerted by the anomalies along the network by the obstacles examined.The method can be extended to other regular and/or irregular geometric figures,whose union together constitutes the examined network,allowing to optimize the functioning of the complex system considered.